Duocarmycins are highly cytotoxic natural products that have potential for development into anticancer agents. Herein we describe proposed but previously unidentified NH analogues of the DNA-alkylating subunit and characterise these by solvolysis studies, NMR and computational modelling. These compounds are shown to be the exclusive intermediates in the solvolysis of their seco precursors and to possess very similar structural features to the widely studied O-based analogues, apart from an unusually high basicity.
View Article and Find Full Text PDFPericonceptional undernutrition (UN) in sheep accelerates fetal hypothalamic-pituitary-adrenal (HPA) axis activation, resulting in preterm birth. In contrast, twin conception suppresses fetal HPA function and delays prepartum HPA activation. We hypothesized that these dissimilar effects on fetal HPA activity result from different influences of maternal glucocorticoid (GC) on maturation of the fetal HPA axis, mediated via different activities of placental 11beta-hydroxysteroid dehydrogenase (11betaHSD) isozymes.
View Article and Find Full Text PDFThe phosphatidylinositide 3-kinase pathway is frequently deregulated in human cancers and inhibitors offer considerable therapeutic potential. We previously described the promising tricyclic pyridofuropyrimidine lead and chemical tool compound PI-103. We now report the properties of the pharmaceutically optimized bicyclic thienopyrimidine derivatives PI-540 and PI-620 and the resulting clinical development candidate GDC-0941.
View Article and Find Full Text PDFPhosphatidylinositol-3-kinase (PI3K) is an important target in cancer due to the deregulation of the PI3K/ Akt signaling pathway in a wide variety of tumors. A series of thieno[3,2-d]pyrimidine derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. The synthesis, biological activity, and further profiling of these compounds are described.
View Article and Find Full Text PDFExtensive evidence implicates activation of the lipid phosphatidylinositide 3-kinase (PI3K) pathway in the genesis and progression of various human cancers. PI3K inhibitors thus have considerable potential as molecular cancer therapeutics. Here, we detail the pharmacologic properties of a prototype of a new series of inhibitors of class I PI3K.
View Article and Find Full Text PDF