Publications by authors named "Sonia Aguado"

Article Synopsis
  • Staphylococcus aureus forms strong biofilms that resistant to chemotherapy, leading to disease spread and high healthcare costs, highlighting the need for effective surface coatings.
  • This study introduces a silver-containing metal-organic framework (MOF) composite that shows potential as a surface coating to combat S. aureus biofilms through its intrinsic antibacterial properties and response to UVA light.
  • The composite demonstrated significant bacterial inhibition and detachment after UVA irradiation, indicating its effectiveness for application on high-touch surfaces like surgical devices and doorknobs.
View Article and Find Full Text PDF

Reducing human impacts on drinking water is one of the main challenges for the water treatment industry. This work provides new results to support the recycling of EoL desalination reverse osmosis (RO) membranes for Membranes Biofilm Reactors (MBfRs). We investigate if the controlled-removal of fouling and polyamide layer may favor the use of these membranes in MBfRs.

View Article and Find Full Text PDF

In the present study, the biocidal activity of three different metal organic frameworks (MOFs) based on Co (Co-SIM1), Zn (Zn-SIM1) and Ag (Ag-TAZ) has been evaluated towards one green alga and two cyanobacteria. These organisms are present in fresh- and seawater and take part in the early stages of the biofouling process. The biocidal activity of these materials was evaluated by measuring chlorophyll a concentration and by inhibition zone testing.

View Article and Find Full Text PDF

The substituted imidazolate-based MOF (SIM-1) easily forms a homogeneous layer at the surface of millimetric platinum-loaded alumina beads. This new core-shell SIM-1@Pt/Al2O3 catalyst shows the fine molecular sieving effect for the Pt-catalyzed hydrogenation of carbon-carbon double bonds.

View Article and Find Full Text PDF

We report the supercell crystal structure of a ZIF-8 analog substituted imidazolate metal-organic framework (SIM-1) obtained by combining solid-state nuclear magnetic resonance and powder X-ray diffraction experiments with density functional theory calculations.

View Article and Find Full Text PDF

Two cobalt imidazolate metal-organic frameworks were evaluated as a bactericidal material against the growth of the Gram-negative bacteria Pseudomonas putida and Escherichia coli. Under the most unfavourable conditions, within the exponential growth phase and in the culture media for both microorganisms, the growth inhibition reached over 50% for concentrations of biocidal material in the 5-10mgL(-1) range. The release of metal gives excellent durability with the antibacterial effect persisting after 3months.

View Article and Find Full Text PDF

The one-pot postfunctionalization allows anchoring a molecular nickel complex into a mesoporous metal-organic framework (Ni@(Fe)MIL-101). It is generating a very active and reusable catalyst for the liquid-phase ethylene dimerization to selectively form 1-butene. Higher selectivity for 1-butene is found using the Ni@(Fe)MIL-101 catalyst than reported for molecular nickel diimino complexes.

View Article and Find Full Text PDF

Absolute ethylene/ethane separation is achieved by ethane exclusion on silver-exchanged zeolite A adsorbent. This molecular sieving type separation is attributed to the pore size of the adsorbent, which falls between ethylene and ethane kinetic diameters.

View Article and Find Full Text PDF

Covalent post-synthetic modification of a MOF, (In) MIL-68-NH(2), is carried out in a novel fashion to immobilize amino acids within the structure. Solid-phase peptide coupling methodology opens new perspectives for anchoring chiral bio- and catalytically active species. This could facilitate the immobilization of highly active and/or coordinating moieties inside MOF cavities.

View Article and Find Full Text PDF

Combinatorial screening using precipitation methods at room temperature can lead to a great diversity of carboxylate based Metal Organic Frameworks (MOFs) including already known or original porous solids. The investigation of the synthesis of MOFs in different solvent and solvent mixtures includes the use of solvents such as alcohols and tetrahydrofuran (THF) which would greatly facilitate large scale production. We also show the application of Principal Component Analysis (PCA) and clustering techniques on large libraries of XRD diffraction files in order to identify classes of similar phases and peculiar phases.

View Article and Find Full Text PDF

A substituted imidazolate-based MOF (SIM-1), easily shaped in situ on and in millimetre-sized alumina beads, is useful for catalytic applications and undergoes no modification of its intrinsic properties.

View Article and Find Full Text PDF

The role of metal-organic frameworks (MOFs) in the field of catalysis is discussed, and special focus is placed on their assets and limits in light of current challenges in catalysis and green chemistry. Their structural and dynamic features are presented in terms of catalytic functions along with how MOFs can be designed to bridge the gap between zeolites and enzymes. The contributions of MOFs to the field of catalysis are comprehensively reviewed and a list of catalytic candidates is given.

View Article and Find Full Text PDF