Broadband infrared (IR) absorption is sought after for wide range of applications. Graphene can support IR plasmonic waves tightly bound to its surface, leading to an intensified near-field. However, the excitation of graphene plasmonic waves usually relies on resonances.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2022
Refractory carbides are attractive candidates for support materials in heterogeneous catalysis because of their high thermal, chemical, and mechanical stability. However, the industrial applications of refractory carbides, especially silicon carbide (SiC), are greatly hampered by their low surface area and harsh synthetic conditions, typically have a very limited surface area (<200 m g), and are prepared in a high-temperature environment (>1,400 °C) that lasts for several or even tens of hours. Based on Le Chatelier's principle, we theoretically proposed and experimentally verified that a low-pressure carbothermal reduction (CR) strategy was capable of synthesizing high-surface area SiC (569.
View Article and Find Full Text PDFAtomic force microscopy (AFM) provides unprecedented insight into surface topography research with ultrahigh spatial resolution at the subnanometer level. However, a slow scanning rate has to be employed to ensure the image quality, which will largely increase the accumulated sample drift, thereby, resulting in the low fidelity of the AFM image. In this paper, we propose a fast imaging method which performs a complete fast Raster scanning and a slow μ-path subsampling together with a deep learning algorithm to rapidly produce an AFM image with high quality and small drift.
View Article and Find Full Text PDFHeterojunction nanostructures usually exhibit enhanced properties in compariosn with their building blocks and are promising catalyst candidates due to their combined surface and unique interface. Here, for the first time we realized the oriented growth of ultrasmall metal nanoparticles (NPs) on metal-organic framework nanosheets (MOF NSs) by precisely regulating the reduction kinetics of metal ions with solvents. In particular, a rapid reduction of metal ions leads to the random distribution of metal NPs on the surface of MOF NSs, while a slow reduction of metal ions results in the oriented growth of NPs on the edge of MOF NSs.
View Article and Find Full Text PDFRaman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA.
View Article and Find Full Text PDFOrganic-inorganic halide perovskites are emerging materials for photovoltaic applications with certified power conversion efficiencies (PCEs) over 25%. Generally, the microstructures of the perovskite materials are critical to the performances of PCEs. However, the role of the nanometer-sized grain boundaries (GBs) that universally existing in polycrystalline perovskite films could be benign or detrimental to solar cell performance, still remains controversial.
View Article and Find Full Text PDFTwo-dimensional (2D) metal-organic framework nanosheets (MOF NSs) play a vital role in catalysis, but the most preparation is ultrasonication or solvothermal. Herein, a liquid-liquid interfacial synthesis method has been developed for the efficient fabrication of a series of 2D Ni MOF NSs. The active sites could be modulated by readily tuning the ratios of metal precursors and organic linkers (R ).
View Article and Find Full Text PDFNanostructure-based surface-enhanced infrared absorption (SEIRA) spectroscopy has attracted tremendous interest as an ultrasensitive detection tool that supplies chemical-fingerprint information. The interactions between molecular vibrations and plasmons lead to not only the enhancement of spectral intensity, but also the distortion of spectral Lorentzian lineshapes into asymmetric Fano-type or more complicated lineshapes in the SEIRA spectra; this effect hampers the correct readout of vibrational frequencies and intensities for an accurate interpretation of the measured spectra and quantitative analysis. In this work, we investigate the Fano interference between molecular vibrations and plasmons based on exact electrodynamic simulations and theoretical models.
View Article and Find Full Text PDFA surface-enhanced Raman scattering-chiral anisotropy (SERS-ChA) effect is reported that combines chiral discrimination and surface Raman scattering enhancement on chiral nanostructured Au films (CNAFs) equipped in the normal Raman scattering Spectrometer. The CNAFs provided remarkably higher enhancement factors of Raman scattering (EFs) for particular enantiomers, and the SERS intensity was proportional to the enantiomeric excesses (ee) values. Except for molecules with mesomeric species, all of the tested enantiomers exhibited high SERS-ChA asymmetry factors (g), ranging between 1.
View Article and Find Full Text PDFKnowledge of atomistic structures at solid/liquid interfaces is essential to elucidate interfacial processes in chemistry, physics, and materials sciences. The (√3 × √7) structure associated with a pair of sharp reversible current spikes in the cyclic voltammogram on a Au(111) electrode in sulfuric acid solution represents one of the most classical ordered structures at electrode/electrolyte interfaces. Although more than 10 adsorption configurations have been proposed in the past four decades, the atomistic structure remains ambiguous and is consequently an open problem in electrochemistry and surface science.
View Article and Find Full Text PDFPlasmonic optical antennas (POAs), often constructed from gold or silver nanostructures, can enhance the radiation efficiency of emitters coupled to POAs and are applied in surface-enhanced Raman spectroscopy (SERS) and light-emitting devices. Over the past four decades, radiation enhancement factors (REFs) of POA-emitter systems were considered to be difficult to calculate directly and have been predicted indirectly and approximately, assuming POAs are illuminated by electromagnetic plane waves without emitters. The validity of this approximation remains a significant open problem in SERS theory.
View Article and Find Full Text PDFelectrochemical infrared spectroscopy and Raman spectroscopy are powerful tools for probing potential-dependent adstructures at solid/liquid electrochemical interfaces. However, it is very difficult to quantitatively interpret the observed spectral features including potential-dependent vibrational frequency and spectral intensity, even from model systems such as single-crystal electrode/liquid interfaces. The clear understanding of electrochemical vibrational spectra has remained as a fundamental issue for four decades.
View Article and Find Full Text PDFThe fabrication of thin films comprising ordered nanowire assemblies with emerging, precisely defined properties and adjustable functionalities enables highly integrated technologies in the fields of microelectronics and micro system technology, as well as for efficient power generation, storage, and utilization. Shear force, theoretically, is deemed the most promising method for obtaining in-plane, uniaxial thin films comprising nanowires. The success depends largely on the assembly process, and uniform structural control throughout multiple length scales can be achieved only if a rational strategy is executed.
View Article and Find Full Text PDFOne of the promising approaches to meet the urgent demand for further device miniaturization is to create functional devices using single molecules. Although various single-molecule electronic devices have been demonstrated recently, single-molecule optical devices which use external stimulations to control the optical response of a single molecule have rarely been reported. Here, we propose and demonstrate a field-effect Raman scattering (FERS) device with a single molecule, an optical counterpart to field-effect transistors (a key component of modern electronics).
View Article and Find Full Text PDFChem Commun (Camb)
December 2017
In this feature article, we discuss in detail developmental bottleneck issues in Raman spectroscopy in its early stages and surface-enhanced Raman spectroscopy (SERS) in the past four decades. We divide SERS research into two different directions with different targets. Fundamental research is extending the limits of SERS to single-molecule, sub-nanometer resolution and femtosecond processes.
View Article and Find Full Text PDFAfter surface-enhanced Raman spectroscopy (SERS) was initiated over four decades ago, its practical application seems to be far behind the fundamental research that has made tremendous progress. SERS as a highly sensitive technique has not been widely adopted by the materials science and surface science communities or in the market of analytical instruments. In this discussion, we first classify the previous approaches along this direction over the past four decades and divide them into three strategies.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures.
View Article and Find Full Text PDFInterparticle spacing was controlled by evaporating water on 2D Au nanoparticles arrays. Relationships among SERS effect, SPR catalysis, and gap distance were experimentally and theoretically studied.
View Article and Find Full Text PDFCore-shell nanoparticles are at the leading edge of the hot research topics and offer a wide range of applications in optics, biomedicine, environmental science, materials, catalysis, energy, and so forth, due to their excellent properties such as versatility, tunability, and stability. They have attracted enormous interest attributed to their dramatically tunable physicochemical features. Plasmonic core-shell nanomaterials are extensively used in surface-enhanced vibrational spectroscopies, in particular, surface-enhanced Raman spectroscopy (SERS), due to the unique localized surface plasmon resonance (LSPR) property.
View Article and Find Full Text PDFWe report an electrochemically assisted jump-to-contact scanning tunneling microscopy (STM) break junction approach to create reproducible and well-defined single-molecule spintronic junctions. The STM break junction is equipped with an external magnetic field either parallel or perpendicular to the electron transport direction. The conductance of Fe-terephthalic acid (TPA)-Fe single-molecule junctions is measured and a giant single-molecule tunneling anisotropic magnetoresistance (T-AMR) up to 53% is observed at room temperature.
View Article and Find Full Text PDFOne important objective of molecular assembly research is to create highly complex functional chemical systems capable of responding, adapting, and evolving. Compared with living systems, the synthetic systems are still rather primitive and are far from realizing those features. Nature is by far the most important source of inspiration for designing and creating such systems.
View Article and Find Full Text PDFHerein, we employ Ag@TiO2 core-shell nanoparticles for surface-enhanced Raman scattering (SERS) investigations of TiO2-N719 dye interfaces. In situ electrochemical SERS investigations of the Ag@TiO2-N719 interaction are systematically carried out under a series of electrode-potential controls. By comparing the potential dependence of resonant and pre-resonant SERS spectra recorded with different laser excitations, bidentate carboxylate linkage is considered to be involved in N719 adsorption on TiO2.
View Article and Find Full Text PDFA comparative study of gold nanoparticles (Au NPs) growth employing cetyltrimethylammonium bromide (CTAB) adsorbent was performed. Au nanooctahedrons transformed into slightly truncated nanocubes without centrifugation, whereas they transformed into nanocubes with centrifugation. Our results indicate that the mass transfer of Au monomers can influence the shape evolution of NPs.
View Article and Find Full Text PDFAiming to solve the problem of simulation of the potential dependent surface Raman spectra of anion containing surface complexes on electrodes, we developed a new simulation model by adding different cations (Li(+), Na(+), K(+), Rb(+) or Cs(+)) attached to the bottom layer of a large metallic cluster while the surface complex sits on the top layer.
View Article and Find Full Text PDF