Publications by authors named "Songyang Ren"

Hantaviruses have evolved a unique translation strategy to boost the translation of viral mRNA in infected cells. Hantavirus nucleocapsid protein (NP) binds to the viral mRNA 5' UTR and the 40S ribosomal subunit via the ribosomal protein S19. NP associated ribosomes are selectively loaded on viral transcripts to boost their translation.

View Article and Find Full Text PDF

SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, is a highly contagious positive-sense RNA virus. Its explosive community spread and the emergence of new mutant strains have created palpable anxiety even in vaccinated people. The lack of effective anticoronavirus therapeutics continues to be a major global health concern, especially due to the high evolution rate of SARS-CoV-2.

View Article and Find Full Text PDF

Feline infectious peritonitis (FIP) is a serious viral illness in cats, caused by feline coronavirus. Once a cat develops clinical FIP, the prognosis is poor. The effective treatment strategy for coronavirus infections with immunopathological complications such as SARS-CoV-2, MERS, and FIP is focused on antiviral and immunomodulatory agents to inhibit virus replication and enhance the protective immune response.

View Article and Find Full Text PDF

Hantavirus nucleocapsid protein (NP) inhibits protein kinase R (PKR) dimerization by an unknown mechanism to counteract its antiviral responses during virus infection. Here we demonstrate that NP exploits an endogenous PKR inhibitor P58IPK to inhibit PKR. The activity of P58IPK is normally restricted in cells by the formation of an inactive complex with its negative regulator Hsp40.

View Article and Find Full Text PDF

Background: Vector-borne diseases (VBDs) impact both human and veterinary medicine and pose special public health challenges. The main bacterial vector-borne pathogens (VBPs) of importance in veterinary medicine include Anaplasma spp., Bartonella spp.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate detection of vector-borne pathogens (VBPs) is crucial due to the increasing cases in humans and animals, and current PCR assays face challenges in identifying low levels of these pathogens in blood samples.
  • This study examined the effectiveness of a microbial enrichment kit to boost VBP detection in canine blood by depleting host DNA, using samples from dogs infected with specific pathogens.
  • Results showed that the microbial concentrating kit did not enhance VBP detection but did lower host DNA presence, suggesting that more research is needed to find better methods for improving VBP enrichment before testing.
View Article and Find Full Text PDF

Expression of genes associated with inflammation was analyzed during differentiation of human pluripotent stem cells (PSCs) to hepatic cells. Messenger RNA transcript profiles of differentiated endoderm (day 5), hepatoblast (day 15) and hepatocyte-like cells (day 21) were obtained by RNA sequencing analysis. When compared to endoderm cells an immature cell type, the hepatic cells (days 15 and 21) had significantly higher expression of acute phase protein genes including complement factors, coagulation factors, serum amyloid A and serpins.

View Article and Find Full Text PDF

Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens.

View Article and Find Full Text PDF

Unlabelled: Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.

View Article and Find Full Text PDF

Hepatitis C Virus (HCV) affects 3% of the world's population and causes serious liver ailments including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV is an enveloped RNA virus belonging to the family Flaviviridae. Current treatment is not fully effective and causes adverse side effects.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) causes chronic hepatitis, cirrhosis, and liver cancer. cis-acting RNA elements of the HCV genome are critical for translation initiation and replication of the viral genome. We hypothesized that the coding regions of nonstructural proteins harbor enhancer and essential cis-acting replication elements (CRE).

View Article and Find Full Text PDF

We report here a non-invasive multispectral imaging platform for monitoring spectral reflectance and fluorescence images from primary breast carcinoma and metastatic lymph nodes in preclinical rat model in vivo. The system is built around a monochromator light source and an acousto-optic tunable filter (AOTF) for spectral selection. Quantitative analysis of the measured reflectance profiles in the presence of a widely-used lymphazurin dye clearly demonstrates the capability of the proposed imaging platform to detect tumor-associated spectral signatures in the primary tumors as well as metastatic lymphatics.

View Article and Find Full Text PDF

The active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)(2)D) enhances innate immunity by inducing the cathelicidin antimicrobial peptide (hCAP). In monocytes/macrophages, this occurs primarily in response to activation of TLR, that induce expression of the vitamin D receptor and localized synthesis of 1,25(OH)(2)D from precursor 25-hydroxyvitamin D(3) (25OHD). To clarify the relationship between vitamin D and innate immunity, we assessed changes in hCAP expression in vivo and ex vivo in human subjects attending a bone clinic (n = 50).

View Article and Find Full Text PDF

The active form of vitamin D, 1,25-dihydroxyvitamin D3, [1,25(OH)2D3] has potent actions on innate and adaptive immunity. Although endocrine synthesis of 1,25(OH)2D3 takes place in the kidney, the enzyme that catalyzes this, 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27b1 in humans, Cyp27b1 in mice), is expressed at many extra-renal sites including the colon. We have shown previously that colonic expression of CYP27b1 may act to protect against the onset of colitis.

View Article and Find Full Text PDF

Tissue availability of the active vitamin D metabolite, 1,25-dihydroxyvitamin D [1,25(OH)(2)D] is dependent on expression of the activating enzyme 1alpha-hydroxylase (CYP27b1) and its catabolic counterpart 24-hydroxylase (CYP24). The activity of these two enzymes is in turn controlled by factors including affinity of the serum vitamin D-binding protein (DBP) for 25-hydroxyvitamin D [25(OH)D]; the availability of enzyme cofactors; and the relative amount of hydroxylase gene product expressed. In recent years, it has become clear that directed trafficking of substrate and enzyme is also a pivotal component of the regulated process of hormone synthesis by both renal and extrarenal tissues expressing the CYP27b1 and CYP24 genes.

View Article and Find Full Text PDF

Synthesis of the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25-(OH)(2)D), by renal epithelial cells is tightly controlled during normal calcium homeostasis. By contrast, macrophage production of 1,25-(OH)(2)D is often dysregulated with potential hypercalcemic complications. We have postulated that this is due to abnormal catabolism of 1,25-(OH)(2)D by the feedback control enzyme, vitamin D-24-hydroxylase (CYP24).

View Article and Find Full Text PDF

Using vitamin D-resistant New World primates as model of natural diversity for sterol/steroid action and metabolism, two families of novel intracellular vitamin D regulatory proteins have been discovered and their human homologs elucidated. The first family of proteins, heterogeneous nuclear ribonucleoproteins (hnRNPs), initially considered to function only as pre-mRNA-interacting proteins, have been demonstrated to be potent cis-acting, trans-dominant regulators of vitamin D hormone-driven gene transactivation. The second group of proteins bind 25-hydroxylated vitamin D metabolites.

View Article and Find Full Text PDF

Control of 125-dihydroxyvitamin D (1,25-(OH)2D) synthesis is believed to be primarily at the level of expression of the vitamin D-1-hydroxylase (CYP1alpha; CYP1alpha) gene. Once transcribed, generation of product, as catalyzed by 1-hydroxylase, depends upon the availability of various co-factors, molecular oxygen, electrons as well as substrate to the enzyme. Here we provide evidence that the quantity of product 1,25-(OH)2D generated also relies on the presence and level of expression of the intracellular vitamin D binding protein-1 (IDBP-1) and its capacity to promote 24-hydroxylase (CYP24) gene expression.

View Article and Find Full Text PDF