Publications by authors named "Songyang An"

Recent advancements in artificial intelligence (AI) have prompted researchers to expand into the field of oculomics; the association between the retina and systemic health. Unlike conventional AI models trained on well-recognized retinal features, the retinal phenotypes that most oculomics models use are more subtle. Consequently, applying conventional tools, such as saliency maps, to understand how oculomics models arrive at their inference is problematic and open to bias.

View Article and Find Full Text PDF

Significance: Our retinal image-based deep learning (DL) cardiac biological age (BioAge) model could facilitate fast, accurate, noninvasive screening for cardiovascular disease (CVD) in novel community settings and thus improve outcome with those with limited access to health care services.

Purpose: This study aimed to determine whether the results issued by our DL cardiac BioAge model are consistent with the known trends of CVD risk and the biomarker leukocyte telomere length (LTL), in a cohort of individuals from the UK Biobank.

Methods: A cross-sectional cohort study was conducted using those individuals in the UK Biobank who had LTL data.

View Article and Find Full Text PDF

Background: Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of death globally, and early detection of high-risk individuals is essential for initiating timely interventions. The authors aimed to develop and validate a deep learning (DL) model to predict an individual's elevated 10-year ASCVD risk score based on retinal images and limited demographic data.

Methods: The study used 89,894 retinal fundus images from 44,176 UK Biobank participants (96% non-Hispanic White, 5% diabetic) to train and test the DL model.

View Article and Find Full Text PDF

Deep learning (DL) models have shown promise in detecting chronic kidney disease (CKD) from fundus photographs. However, previous studies have utilized a serum creatinine-only estimated glomerular rate (eGFR) equation to measure kidney function despite the development of more up-to-date methods. In this study, we developed two sets of DL models using fundus images from the UK Biobank to ascertain the effects of using a creatinine and cystatin-C eGFR equation over the baseline creatinine-only eGFR equation on fundus image-based DL CKD predictors.

View Article and Find Full Text PDF