The methyltransferase complex (MTC) deposits N6-adenosine (mA) onto RNA, whereas the microprocessor produces microRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B tends to form insoluble condensates with poor activity, with its level monitored by the 20S proteasome.
View Article and Find Full Text PDFRNA secondary structure (RSS) of primary microRNAs (pri-miRNAs) is a key determinant for miRNA production. Here we report that RNA helicase (RH) Brr2a, best known as a spliceosome component, modulates the structural complexity of pri-miRNAs to fine tune miRNA yield. Brr2a interacts with microprocessor component HYL1 and its loss reduces the levels of miRNAs derived from both intron-containing and intron-lacking pri-miRNAs.
View Article and Find Full Text PDFMethyltransferase complex (MTC) deposits 6-adenosine (m A) onto RNA, whereas microprocessor produces miRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B (MTB) tends to form insoluble condensates with poor activity, with its level monitored by 20S proteasome.
View Article and Find Full Text PDFThe H3 methyltransferases ATXR5 and ATXR6 deposit H3.1K27me1 to heterochromatin to prevent genomic instability and transposon re-activation. Here, we report that atxr5 atxr6 mutants display robust resistance to Geminivirus.
View Article and Find Full Text PDFRNA helicases (RHs) are a family of ubiquitous enzymes that alter RNA structures and remodel ribonucleoprotein complexes typically using energy from the hydrolysis of ATP. RHs are involved in various aspects of RNA processing and metabolism, exemplified by transcriptional regulation, pre-mRNA splicing, miRNA biogenesis, liquid-liquid phase separation, and rRNA biogenesis, among other molecular processes. Through these mechanisms, RHs contribute to vegetative and reproductive growth, as well as abiotic and biotic stress responses throughout the life cycle in plants.
View Article and Find Full Text PDFTranslational repression is a conserved mechanism in microRNA (miRNA)-guided gene silencing. In Arabidopsis, ARGONAUTE1 (AGO1), the major miRNA effector, localizes in the cytoplasm for mRNA cleavage and at the endoplasmic reticulum (ER) for translational repression of target genes. However, the mechanism underlying miRNA-mediated translational repression is poorly understood.
View Article and Find Full Text PDFSERRATE (SE) is a key factor in RNA metabolism. Here, we report that SE binds 20S core proteasome α subunit G1 (PAG1) among other components and is accumulated in their mutants. Purified PAG1-containing 20S proteasome degrades recombinant SE via an ATP- and ubiquitin-independent manner in vitro.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2019
During RNA-directed DNA methylation (RdDM), the DDR complex, composed of DRD1, DMS3, and RDM1, is responsible for recruiting DNA polymerase V (Pol V) to silence transposable elements (TEs) in plants. However, how the DDR complex is regulated remains unexplored. Here, we show that the anaphase-promoting complex/cyclosome (APC/C) regulates the assembly of the DDR complex by targeting DMS3 for degradation.
View Article and Find Full Text PDFPhosphorylation plays an essential role in microRNA (miRNA) processing by regulating co-factors of the miRNA biogenesis machinery. HYL1 (Hyponastic Leaves 1), a core co-factor in plant miRNA biogenesis, is a short-lived phosphoprotein. However, the precise balance and regulatory mechanism of the stability and phosphorylation of HYL1 remain unclear.
View Article and Find Full Text PDFLariat RNAs formed as by-products of splicing are quickly degraded by the RNA debranching enzyme 1 (DBR1), leading to their turnover. Null dbr1 mutants in both animals and plants are embryo lethal, but the mechanism underlying the lethality remains unclear. Here we characterized a weak mutant allele of DBR1 in Arabidopsis, dbr1-2, and showed that a global increase in lariat RNAs was unexpectedly accompanied by a genome-wide reduction in miRNA accumulation.
View Article and Find Full Text PDF