Publications by authors named "Songwei Lv"

Microplastics (MPs) are defined as plastic particles smaller than 5 mm in size, and nanoplastics (NPs) are those MPs with a particle size of less than 1000 nm or 100 nm. The prevalence of MPs in the environment and human tissues has raised concerns about their potential negative effects on human health. Macrophages are the major defence against foreign substances in the intestine, and can be polarized into two types: the M1 phenotype and the M2 phenotype.

View Article and Find Full Text PDF

Long-chain noncoding small nucleolar RNA host gene 14 (LncRNA SNHG14) is highly expressed in various diseases and promotes diseases progression, but the role and mechanism of LncRNA SNHG14 on targeting miR-137 in promoting osteoarthritis (OA) chondrocyte injury remains unclear. To measure the expression of the LncRNAs SNHG14 and miR-137, cell survival, inflammatory response, chondrocyte apoptosis, and extracellular matrix (ECM) levels, we subjected human chondrocytes to a variety of lipopolysaccharide (LPS) concentrations. To measure the luciferase activity of SNHG14-WT and SNHG14-MUT transfected with miR-137 mimic or miR-NC mimic, luciferase reporter genes were utilized.

View Article and Find Full Text PDF

As a class of short non-coding ribonucleic acids (RNAs), microRNAs (miRNA) regulate gene expression in human cells and are expected to be nucleic acid drugs to regulate and treat a variety of biological processes and diseases. However, the issues with potential materials toxicity, quantity production, poor cellular uptake, and endosomal entrapment limit their further applications in clinical practice. Herein, ZIF-8, a metal-organic framework with noncytotoxic zinc (II) as the metal coordination center, was selected as miRNA delivery vector was used to prepare miR-200c-3p@ZIF-8 in one step by Y-shape microfluidic chip to achieve intracellular release with low toxicity, batch size, and efficient cellular uptake.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) has become a major global health concern prompting the quest for new antibiotics with higher efficiency and less proneness to drug resistance. Antimicrobial peptides (AMPs) offer such properties and have therefore gained increasing attention as a new generation of antibiotics to overcome AMR. In an attempt to develop new highly selective and highly efficient antifungal peptides, a sequence (named At1) originating from the natural AMP Ponericin-W1 was used as a lead sequence for rational design of a series of short cationic antifungal peptides named At2-At12.

View Article and Find Full Text PDF

Accurately obtaining information on the heterogeneity of CTCs at the single-cell level is a very challenging task that may facilitate cancer pathogenesis research and personalized therapy. However, commonly used multicellular population capture and release assays tend to lose effective information on heterogeneity and cannot accurately assess molecular-level studies and drug resistance assessment of CTCs in different stages of tumor metastasis. Herein, we designed a near-infrared (NIR) light-responsive microfluidic chip for biocompatible single-cell manipulation and study the heterogeneity of CTCs by a combination of the lateral flow microarray (LFM) chip and photothermal response system.

View Article and Find Full Text PDF

Photothermal therapy using laser activated gold nanorods (AuNRs) is a strategy for treatment of bacterial infections. Nevertheless, it also exerts cytotoxicity against human cells which leads to adverse effects in healthy human tissues and limits the applicable dose. Functionalization of AuNRs with a selective antimicrobial peptide (AMP) with higher selectivity for bacteria over human cells is a promising strategy for increasing the selectivity of the AuNRs for bacteria, hence increasing their cellular uptake by the bacteria in order to achieve stronger antimicrobial effects with lower doses of AuNRs without damaging the human cells.

View Article and Find Full Text PDF

Anticancer peptides (ACPs) have attracted increasing attention in cancer therapy due to their unique mechanism of action on cancer cells. The main challenge is to establish the correlation between their physicochemical properties and their selectivity and anticancer effect, leading to a clear design strategy. In this study, a series of new α-helical short peptides (coded At1-At12) with different anticancer activities were systematically designed with different amphiphilicity based on a natural α-helical antimicrobial peptide (AMP) derived from ant.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) or host-defence peptides act by penetrating and disrupting the bacterial membranes and are therefore less prone to antimicrobial resistance (AMR) compared to conventional antibiotics. However, there are still many challenges in the clinical application of the naturally occurring AMPs which necessitates further studies to establish the relationship between the chemical structure of AMPs and their antimicrobial activity and selectivity. Herein, we report a study on the relationship between the chemical structure and the biological activity of a series of rationally designed AMPs derived from Ponericin-W1, a naturally occurring AMP from ants.

View Article and Find Full Text PDF

Liposomes have been widely used in nanomedicine for the delivery of hydrophobic and hydrophilic anticancer agents. The most common applications of these formulations are vaccines and anticancer formulations (e.g.

View Article and Find Full Text PDF

The cartilage repair and regeneration show inadequate self-healing capability and have some complications, which are inordinate challenges in clinical therapy. Biopolymeric injectable hydrogels, a prominent type of cell-carrier as well tissue engineering scaffolding materials, establish promising therapeutic potential of stem cell-based cartilage-regeneration treatment. In addition, injectable scaffolding biomaterial should have rapid gelation properties with adequate rheological and mechanical properties.

View Article and Find Full Text PDF

Recently, stretchable electrochemical sensors have stood out as a powerful tool for the detection of soft cells and tissues, since they could perfectly comply with the deformation of living organisms and synchronously monitor mechanically evoked biomolecule release. However, existing strategies for the fabrication of stretchable electrochemical sensors still face with huge challenges due to scarce electrode materials, demanding processing techniques and great complexity in further functionalization. Herein, we report a novel and facile strategy for one-step preparation of stretchable electrochemical biosensors by doping ionic liquid and catalyst into a conductive polymer (poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS).

View Article and Find Full Text PDF

Introduction: Cancer of the bladder is one of the most common and life-threatening. Compared with traditional delivery methods, intravesical administration reduces the amount of drugs required, increases the amount of drugs reaching the lesion site, and minimizes systemic exposure to therapeutic agents. To overcome the limitations of urinary voiding, low urothelium permeability, and intermittent catheterization for large dilution and irrigation of drugs in the bladder, magnetic and photothermal-responsive folate receptor-targeted thermal liposomes (FA-TMLs) were designed for the targeted delivery of doxorubicin (DOX) to bladder cancer cells.

View Article and Find Full Text PDF

Alginate/Silk fibroin/hyaluronic acid (ALG/SF/HA) nanocomposites were synthesised using blending, inter-linking, and lyophilization methods. We investigated the physicochemical properties of the resulting nanocomposites, including their water retention, weight loss, porosity and cytocompatibility. The optimum ratios of the ALG/SF/HA scaffolding were 3:6.

View Article and Find Full Text PDF

Background: Electrospinning is a widely used technology that can produce scaffolds with high porosity and surface area for bone regeneration. However, the small pore sizes in electrospun scaffolds constrain cell growth and tissue-ingrowth. In this study, novel drug-loading core-shell scaffolds were fabricated via electrospinning and freeze drying to facilitate the repair of tibia bone defects in rabbit models.

View Article and Find Full Text PDF

Although numerous materials have been explored as bone scaffolds, many of them are limited by their low osteoconductivity and high biodegradability. Therefore, new materials are desired to induce bone cell proliferation and facilitate bone formation. Attapulgite (ATP) is a hydrated silicate that exists in nature as a fibrillar clay mineral and is well known for its large specific surface area, high viscosity, and high absorption capacity, and therefore has the potential to be a new type of bone repair material due to its unique physicochemical properties.

View Article and Find Full Text PDF

Isolation of single circulating tumor cells (CTCs) from patients is a very challenging technique that may promote the process of individualized antitumor therapies. However, there exist few systems capable of highly efficient capture and release of single CTCs with high viability for downstream analysis and culture. Herein, we designed a near-infrared (NIR) light-responsive substrate for highly efficient immunocapture and biocompatible site-release of CTCs by a combination of the photothermal effect of gold nanorods (GNRs) and a thermoresponsive hydrogel.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new microchip with a 3D PDMS scaffold designed for effectively capturing circulating tumor cells (CTCs), which is important for cancer research.
  • This microchip features a strong, flexible, and transparent design that enhances the isolation process by utilizing chaotic migration and maximizing binding sites for the cells.
  • The researchers successfully identified CTCs from the blood of cancer patients, demonstrating the microchip's potential for improving the analysis of these cells and their clusters.
View Article and Find Full Text PDF

DNA methylation (5-methylcytosine, 5-mC) is the best characterized epigenetic mark that has regulatory roles in diverse biological processes. Recent investigation of RNA modifications also raises the possible functions of RNA adenine and cytosine methylations on gene regulation in the form of "RNA epigenetics." Previous studies demonstrated global DNA hypomethylation in tumor tissues compared to healthy controls.

View Article and Find Full Text PDF

Isolation, release and culture of rare circulating tumor cells (CTCs) may, if implemented, promote the progress of individualized anti-tumor therapies. To realize the release of CTCs without disruption of their viability for further culture and analysis, we designed an effective photocontrolled CTC capture/release system by combination of photochemistry and immunomagnetic separation. 7-Aminocoumarin was synthesized as the phototrigger to bridge the connection between the anti-EpCAM antibody and the magnetic beads.

View Article and Find Full Text PDF

The detection of •OH in live organisms is crucial to the understanding of its physiological and pathological roles; while this is too challenging because of the extremely low concentration and high reactivity of the species in the body. Herein, we report the rational design and fabrication of an NIR-light excited luminescence resonance energy transfer-based nanoprobe, which for the first time realizes the in vivo detection of •OH. The nanoprobe is composed of two moieties: upconversion nanoparticles with sandwich structure and bared surface as the energy donor; and mOG, a modified azo dye with tunable light absorption, as both the energy acceptor and the •OH recognizing ligand.

View Article and Find Full Text PDF

Isolation of rare, pure, and viable circulating tumor cells (CTCs) provides a significant insight in early cancer diagnosis, and release of captured CTCs without damage for ex vivo culture may offer an opportunity for personalized cancer therapy. In this work, we described a biotin-triggered decomposable immunomagnetic system, in which peptide-tagged antibody designed by chemical conjugation was specifically immobilized on engineered protein-coated magnetic beads. The interaction between peptide and engineered protein can be reversibly destroyed by biotin treatment, making capture and release of CTCs possible.

View Article and Find Full Text PDF

Upconversion nanoparticles (UCNPs) are promising energy donors for luminescence resonance energy transfer (LRET) and have widely been used to construct nanoprobes. To improve the LRET efficiency, which is currently a limiting factor for UCNPs-based bioassay, we herein propose a strategy to construct LRET-based nanoprobe using UCNPs with confined emitters and bared surface as the luminophore, with Ca(2+) as the proof-of-concept target. The sandwich-structure upconversion nanoparticles (SWUCNPs) are designed with a core-inner shell-outer shell architecture, in which the emitting ions (Ln(3+)) are precisely located in the inner shell near the particle surface, which is close enough to external energy acceptors.

View Article and Find Full Text PDF

Here, we report a self-supported nanoporous gold microelectrode decorated with well-dispersed and tiny platinum nanoparticles as an electrochemical nonenzymatic hydrogen peroxide biosensor. Nanoporous gold was fabricated by electrochemical alloying/dealloying and then small-sized platinum nanoparticles were electrodeposited uniformly on them. This novel hybrid nanostructure endows the sensor with high sensitivity and selectivity towards the reduction of hydrogen peroxide with a low detection limit of 0.

View Article and Find Full Text PDF