J Sport Health Sci
January 2025
Background: Exercise induces molecular changes that involve multiple organs and tissues. Moreover, these changes are modulated by various exercise parameters-such as intensity, frequency, mode, and duration-as well as by clinical features like gender, age, and body mass index (BMI), each eliciting distinct biological effects. To assist exercise researchers in understanding these changes from a comprehensive perspective that includes multiple organs, diverse exercise regimens, and a range of clinical features, we developed Exercise Regulated Genes Database (ExerGeneDB), a database of exercise-regulated differential genes.
View Article and Find Full Text PDFBackground: Exercise-induced physiological cardiac growth regulators may protect the heart from ischemia/reperfusion (I/R) injury. Homeobox-containing 1 (Hmbox1), a homeobox family member, has been identified as a putative transcriptional repressor and is downregulated in the exercised heart. However, its roles in exercise-induced physiological cardiac growth and its potential protective effects against cardiac I/R injury remain largely unexplored.
View Article and Find Full Text PDFExercise is a vital component in maintaining optimal health and serves as a prospective therapeutic intervention for various diseases. The human microbiome, comprised of trillions of microorganisms, plays a crucial role in overall health. Given the advancements in microbiome research, substantial databases have been created to decipher the functionality and mechanisms of the microbiome in health and disease contexts.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are considered as cargo and mediate intercellular communication. As natural biological nanoparticles, EVs can be secreted by almost all kinds of cells and exist in biofluids such as milk, urine, blood, etc. In the past decades, several methods have been utilized to isolate EVs from cell culture medium, biofluids, and tissues.
View Article and Find Full Text PDFCommonly used prediction models have been primarily constructed without taking physical activity into account. Using the Kailuan physical activity cohorts from Asymptomatic Polyvascular Abnormalities in Community (APAC) study, we developed a 9-year cardiovascular or cerebrovascular disease (CVD) risk prediction equation. Participants in this study were included from APAC cohort, which included 5440 participants from the Kailuan cohort in China.
View Article and Find Full Text PDF