In recent years, there has been a surge in research on extremophiles due to their remarkable ability to survive in harsh environments. Extremophile thermophilic bacteria provide thermostable enzymes for biotechnology and industry. Thermophilic bacteria live in extreme environments like hot springs at 45-80 °C.
View Article and Find Full Text PDFBulgaria stands out as a country rich in diverse extreme environments, boasting a remarkable abundance of mineral hot waters, which positions it as the second-largest source of such natural resources in Europe. Notably, several thermal and coastal solar salterns within its territory serve as thriving habitats for thermophilic and halophilic microorganisms, which offer promising bioactive compounds, including exopolysaccharides (EPSs). Multiple thermophilic EPS producers were isolated, along with a selection from several saltern environments, revealing an impressive taxonomic and bacterial diversity.
View Article and Find Full Text PDFstrain M1 is a Gram-positive, motile, facultative anaerobic, spore forming, and thermophilic bacterium, isolated from geothermal soil of the crater of Mount Melbourne (74°22' S, 164°40' E) during the Italian Antarctic Expedition occurred in Austral summer 1986-1987. Strain M1 demonstrated great biotechnological and industrial potential owing to its ability to produce exopolysaccharides (EPSs), ethanol and thermostable extracellular enzymes, such as an xylanase and a β-xylosidase, and intracellular ones, such as xylose/glucose isomerase and protease. Furthermore, recent studies revealed its high potential in green chemistry due to its use in residual biomass transformation/valorization and as an appropriate model for microbial astrobiology studies.
View Article and Find Full Text PDFSeveral exopolymers with different chemical composition and correspondingly variety in their physico-chemical properties from halophilic microorganisms have still been described, however, with a low production yield. 28 isolated from Pomorie saltern synthesized an unusual exopolymer (EP) containing 72% γ-polyglutamic acid (PGA), an essential cosmeceutical additive. Current work suggests a novel approach for effective EP synthesis by 28 using continuous cultures.
View Article and Find Full Text PDFUnusual composition of an exopolymer (EP) from an obligate halophilic bacterium 28 has triggered an interest in development of an effective bioreactor process for its production. Its synthesis was investigated in 2-L bioreactor at agitation speeds at interval 600-1000 rpm, at a constant air flow rate of 0.5 vvm; aeration rates of 0.
View Article and Find Full Text PDF423 is a thermophilic bacterium capable of producing high levels of exopolysaccharide (EPS) that has broad applications in nutrition, feed, cosmetics, pharmaceutical, and chemical industries, not to mention in health and bionanotechnology sectors. EPS is a natural, nontoxic, and biodegradable polymer of sugar residues and plays pivotal roles in cell-to-cell interactions, adhesion, biofilm formation, and protection of cell against environmental extremes. This bacterium is a thermophilic EPS producer while exceeding other thermophilic producers by virtue of high level of polymer synthesis.
View Article and Find Full Text PDFBrevibacillus thermoruber 423 is a Gram-positive, motile, red-pigmented, spore-forming, aerobic, and thermophilic bacterium that is known to produce high levels of exopolysaccharide (EPS) with many potential uses in food, feed, cosmetics, and pharmaceutical and chemical industries. This bacterium not only is among the limited number of reported thermophilic EPS producers but also exceeds other thermophilic producers in light of the high level of polymer synthesis. By a systems-based approach, whole-genome analysis of this bacterium was performed to gain more insight about the biological mechanisms and whole-genome organization of thermophilic EPS producers and hence to develop rational strategies for the genetic and metabolic optimization of EPS production.
View Article and Find Full Text PDFPlasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role in acute thrombotic events such as deep vein thrombosis (DVT) and myocardial infarction (MI). The biological effects of PAI-1 extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2 diabetes, and cancer.
View Article and Find Full Text PDFBrevibacillus thermoruber strain 423 is a Gram-positive, spore-forming, aerobic, and thermophilic bacterium that produces mannogalactoglucan exopolysaccharide (EPS). We report the draft genome sequence of B. thermoruber 423, which will accelerate research on the cellular organization of thermophilic bacteria, as well as the rational design and optimization of EPS production.
View Article and Find Full Text PDF