We demonstrate a methodology for computationally investigating the mechanical response of a pure molten lead surface system to the lateral mechanical cyclic loads and try to answer the following question: how does the dynamically driven liquid surface system follow the classical physics of the elastic-driven oscillation? The steady-state oscillation of the dynamic surface tension (or excess stress) under cyclic load, including the excitation of high-frequency vibration mode at different driving frequencies and amplitudes, was compared with the classical theory of a single-body driven damped oscillator. Under the highest studied frequency (50 GHz) and amplitude (5%) of the load, the increase of in (mean value) dynamic surface tension could reach ∼5%. The peak and trough values of the instantaneous dynamic surface tension could reach (up to) 40% increase and (up to) 20% decrease compared to the equilibrium surface tension, respectively.
View Article and Find Full Text PDFWe present a classical molecular-dynamics study of the collective dynamical properties of the coexisting liquid phase at equilibrium body-centered cubic (BCC) Fe crystal-melt interfaces. For the three interfacial orientations (100), (110), and (111), the collective dynamics are characterized through the calculation of the intermediate scattering functions, dynamical structure factors, and density relaxation times in a sequential local region of interest. An anisotropic speedup of the collective dynamics in all three BCC crystal-melt interfacial orientations is observed.
View Article and Find Full Text PDF