Plant Physiol Biochem
December 2024
Salt damage is a major issue that causes a decline in crop yield. WRKY transcription factors (TFs) extensively regulate plant biotic and abiotic stress responses, growth, and development. WRKY45 is crucial in regulating leaf senescence, low phosphorus responses, and cadmium stress response in Arabidopsis.
View Article and Find Full Text PDFAs sessile organisms, plants cannot survive in harmful environments, such as those characterized by drought, flood, heat, cold, nutrient deficiency, and salt or toxic metal stress. These stressors impair plant growth and development, leading to decreased crop productivity. To induce an appropriate response to abiotic stresses, plants must sense the pertinent stressor at an early stage to initiate precise signal transduction.
View Article and Find Full Text PDFSubstantial advancements have been made in our comprehension of vegetative desiccation tolerance in resurrection plants, and further research is still warranted to elucidate the mechanisms governing distinct cellular adaptations. Resurrection plants are commonly referred to as a small group of extremophile vascular plants that exhibit vegetative desiccation tolerance (VDT), meaning that their vegetative tissues can survive extreme drought stress (> 90% water loss) and subsequently recover rapidly upon rehydration. In contrast to most vascular plants, which typically employ water-saving strategies to resist partial water loss and optimize water absorption and utilization to a limited extent under moderate drought stress, ultimately succumbing to cell death when confronted with severe and extreme drought conditions, resurrection plants have evolved unique mechanisms of VDT, enabling them to maintain viability even in the absence of water for extended periods, permitting them to rejuvenate without harm upon water contact.
View Article and Find Full Text PDFDrought is one of the major abiotic stresses that threaten wheat production worldwide, especially in the Mongolian Plateau and adjacent regions. This study aims to find local wheat varieties with high yields and drought resistance at various developmental stages based on agronomic traits and drought resistance indices analysis and explore the underlining molecular mechanisms by transcriptome analysis. Our results revealed that drought stress started at the seedling stage has a greater impact on crop yields.
View Article and Find Full Text PDFFor rapid growth, moso bamboo (Phyllostachys edulis) requires large amounts of nutrients. Nitrate is an indispensable molecular signal to regulate nitrogen absorption and assimilation, which are regulated by group III NIN-LIKE PROTEINs (NLPs). However, no Phyllostachys edulis NLP (PeNLP) has been characterized.
View Article and Find Full Text PDFPyrabactin resistance 1 (PYR1)/PYR1-like (PYL) abscisic acid (ABA) receptors have been proved to be recruited in the plasma membrane (PM). In order to explain the roles of PYR/PYLs in the PM, PYL4 was used as bait to screen the PM-localized leucine-rich repeat receptor-like kinase family, and five members were found directly interacting with PYL4. Loss of function by T-DNA insertion in C-terminally encoded peptide receptor 2 (CEPR2) together with phloem intercalated with xylem (PXY) and PXY-Like 2 (PXL2) led to ABA hypersensitivity, while CEPR2 overexpression led to ABA insensitivity compared with the wild type, indicating the redundant and negative roles of CEPR2, PXY, and PXL2 in ABA signaling.
View Article and Find Full Text PDF