Publications by authors named "Songsirin Ruengvisesh"

Biofilms are a significant concern in the food industry. The utilization of plant-derived compounds to inactivate biofilms on food contact surfaces has not been widely reported. Also, the increasing negative perception of consumers against synthetic sanitizers has encouraged the hunt for natural compounds as alternatives.

View Article and Find Full Text PDF

(nutgall) has been reported to possess antimicrobial activities against a wide range of pathogens. Nevertheless, the biofilm removal effect of nutgall extract has not been widely investigated. In this study, we therefore evaluated the effect of nutgall extract in combination with cetrimonium bromide (CTAB) against preformed biofilm of Typhimurium on polypropylene (PP) and stainless steel (SS) coupons in comparison with other sanitizers.

View Article and Find Full Text PDF

Spinach and other leafy green vegetables have been linked to foodborne disease outbreaks of O157:H7 and around the globe. In this study, the antimicrobial activities of surfactant micelles formed from the anionic surfactant sodium dodecyl sulfate (SDS), SDS micelle-loaded eugenol (1.0% eugenol), 1.

View Article and Find Full Text PDF

Beef safety may be compromised by O157 and non-O157 Shiga toxin-producing (STEC) contamination. The capacity of surfactant micelles loaded with the plant-derived antimicrobial eugenol to reduce STEC on beef trimmings that were later ground and refrigerated for five days at 5 ± 1 °C was tested to determine their utility for beef safety protection. STEC-inoculated trimmings were treated with free eugenol, micelle-encapsulated eugenol, 2% lactic acid (55 °C), sterile distilled water (25 °C), or left untreated (control).

View Article and Find Full Text PDF

Unlabelled: Encapsulation of hydrophobic plant essential oil components (EOC) into surfactant micelles can assist the decontamination of fresh produce surfaces from bacterial pathogens during postharvest washing. Loading of eugenol and carvacrol into surfactant micelles of polysorbate 20 (Tween 20), Surfynol® 485W, sodium dodecyl sulfate (SDS), and CytoGuard® LA 20 (CG20) was determined by identification of the EOC/surfactant-specific maximum additive concentration (MAC). Rheological behavior of dilute EOC-containing micelles was then tested to determine micelle tolerance to shearing.

View Article and Find Full Text PDF