This study aimed to examine the association between occupational burnout and psychological symptoms among Chinese medical staff, assuming social support to play a moderating role in the aforementioned relationship. The survey was conducted online from May 1 to June 28, 2022, and the questionnaires were distributed and retrieved through a web-based platform. The final sample was comprised of 1461 Chinese medical staff in this cross-sectional study.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) with porphyrins as structural units are a new kind of porous organic polymers, which have a regular and ordered structure, abundant porosity, and good stability. In the past, the construction of porphyrin COFs was generally synthesized by routes such as a Schiff base reaction. Here, we report a new COF structure by linking the porphyrin with the triazine ring.
View Article and Find Full Text PDFIn the exploration of synthesizing graphitic carbon nitride (g-CN), the existence of secondary anime bridging units shows the incompleteness of related theories. Thus, taking the thermal synthesis of melamine as an example, this work finds a possible reaction path with Density Functional Theory (DFT) for forming melem during the thermal synthesis of g-CN. Combined with transition state theory (TST), it indicates that the formation of melem results from the condensation of melamine and isomerization of melam.
View Article and Find Full Text PDFSolar-driven interfacial evaporation is a promising technology for water recycling and purification. A sustainable solar evaporation material should have not only high photothermal conversion efficiency, but also an ecofriendly fabrication process as well as pollutant degradation and sterilization properties. We present in this work a solar evaporator based on graphitic carbon nitride (g-CN) and copper phthalocyanine (CUPC) composites with typical type-I heterojunctions.
View Article and Find Full Text PDFThe aim of this study was to identify a panel of candidate autoantibodies against tumor-associated antigens in the detection of osteosarcoma (OS) so as to provide a theoretical basis for constructing a non-invasive serological diagnosis method in early immunodiagnosis of OS. The serological proteome analysis (SERPA) approach was used to select candidate anti-TAA autoantibodies. Then, indirect enzyme-linked immunosorbent assay (ELISA) was used to verify the expression levels of eight candidate autoantibodies in the serum of 51 OS cases, 28 osteochondroma (OC), and 51 normal human sera (NHS).
View Article and Find Full Text PDFObjective: To explore the current situation and influencing factors of traditional Chinese medicine (TCM) nursing clinic in Henan Province. A self-made questionnaire was made and entered into the questionnaire star. In August 2020, through "the snowball sampling method," the nursing branch of Henan Society of Traditional Chinese Medicine was used to calculate the sample size that would be further used for this study.
View Article and Find Full Text PDFIn this work, the photocatalytic and photothermal effects of carbon-ring-doped graphitic carbon nitride materials against bacteria were systematically studied in a dispersed solution and on a membrane. C-doped graphitic carbon nitride materials C-CN 0.15, 1.
View Article and Find Full Text PDFHospital-acquired infections can cause serious complications and are a severe problem because of the increased emergence of antibiotic-resistant bacteria. Biophysical modification of the material surfaces to prevent or reduce bacteria adhesion is an attractive alternative to antibiotic treatment. Since stainless steel is a widely used material for implants and in hospital settings, in this work, we used stainless steel to investigate the effect of the material surface topographies on bacterial adhesion and early biofilm formation.
View Article and Find Full Text PDFJ Nanobiotechnology
February 2018
Background: Due to the increased emergence of antimicrobial resistance, alternatives to minimize the usage of antibiotics become attractive solutions. Biophysical manipulation of material surface topography to prevent bacterial adhesion is one promising approach. To this end, it is essential to understand the relationship between surface topographical features and bactericidal properties in order to develop antibacterial surfaces.
View Article and Find Full Text PDFThis work presents a novel rapid and sensitive label-free electrochemical method for the detection of bacteria on surface nanostructures. A simple electrochemical deposition and calcination method is employed to prepare different gold nanostructures on FTO substrate. The sensor based on nanostructure gold exhibits excellent linear relation between E.
View Article and Find Full Text PDFReinforcing the carrier separation is the key issue to maximize the photocatalytic hydrogen evolution (PHE) efficiency of graphitic carbon nitride (g-C N ). By a surface engineering of gradual doping of graphited carbon rings within g-C N , suitable energy band structures and built-in electric fields are established. Photoinduced electrons and holes are impelled into diverse directions, leading to a 21-fold improvement in the PHE rate.
View Article and Find Full Text PDFPermeable membranes are indispensable for in vitro epithelial barrier models. However, currently available polymer-based membranes are low in porosity and relatively thick, resulting in a limited permeability and unrealistic culture conditions. In this study, we developed an ultrathin, nanoporous alumina membrane as novel cell culture interface for vertebrate cells, with focus on the rainbow trout (Onchorynchus mykiss) intestinal cell line RTgutGC.
View Article and Find Full Text PDFIn this article, a fast and sensitive nonenzymatic glucose sensor is reported utilizing a glassy carbon electrode modified by synthesizing nanocomposites of nickel nanoparticle-attapulgite-reduced graphene oxide (Ni NPs/ATP/RGO). A facile one-step electrochemical co-deposition approach is adopted to synthesize Ni NPs-ATP-RGO nanocomposites via electrochemical reduction of mixed precursor solution containing graphene oxide (GO), attapulgite (ATP) and nickel cations (Ni(2+)) at the cathode potentials. This strategy results in simultaneous depositions of ATP, cathodic reduction of Ni(2+) into nickel nanoparticles under acidic conditions, and in situ reduction of GO.
View Article and Find Full Text PDFA highly sensitive and selective tumor cell sensor based on partially oxidized graphene (POG) and folate acid (FA) composite was constructed. The POG was prepared through a modified Hummers method and characterized by means of Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, atomic force microscopy and transmission electron microscopy. The as-prepared POG exhibited the advantages of high electrochemical activity and a good capacity of linking amine derivatives.
View Article and Find Full Text PDFWe present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height.
View Article and Find Full Text PDFWe investigate ionic partition of negatively charged molecular probes into also negatively charged, covalently crosslinked alginate hydrogels. The aim is to delimit the domain of validity of the major nanoelectrostatic models, and in particular to assess the influence of hydrogel chain mobility on ionic partition. We find that the widely used Gibbs-Donnan model greatly overestimates exclusion of the co-ion probes used.
View Article and Find Full Text PDFActive control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios.
View Article and Find Full Text PDFWe have synthesized various molecular cruciforms consisting of two different crossing n-systems and comprising crosswise arranged thiol- and pyridine-anchor groups. With these model compounds we strive towards the investigation of a new switching concept based on the potential dependent coordination of pyridines to gold electrodes in an electrochemical set-up. Integration of these cruciform molecules between both electrodes of a mechanically controlled break junction in a liquid environment gave insight into their single molecule transport properties.
View Article and Find Full Text PDFRedox-active dithiolated tetrathiafulvalene derivatives (TTFdT) were inserted in two-dimensional nanoparticle arrays to build interlinked networks of molecular junctions. Upon oxidation of the TTFdT to the dication state, we observed a conductance increase of the networks by up to 1 order of magnitude. Successive oxidation and reduction cycles demonstrated a clear switching behavior of the molecular junction conductance.
View Article and Find Full Text PDFIf individual molecules are to be used as building blocks for electronic devices, it will be essential to understand charge transport at the level of single molecules. Most existing experiments rely on the synthesis of functional rod-like molecules with chemical linker groups at both ends to provide strong, covalent anchoring to the source and drain contacts. This approach has proved very successful, providing quantitative measures of single-molecule conductance, and demonstrating rectification and switching at the single-molecule level.
View Article and Find Full Text PDFWe determine and compare, at the single molecule level and under identical environmental conditions, the electrical conductance of four conjugated phenylene oligomers comprising terminal sulfur anchor groups with simple structural and conjugation variations. The comparison shows that the conductance of oligo(phenylene vinylene) (OPV) is slightly higher than that of oligo(phenylene ethynylene) (OPE). We find that solubilizing side groups do neither prevent the molecules from being anchored within a break junction nor noticeably influence the conductance value.
View Article and Find Full Text PDF