Objective: To observe the effect of electroacupuncture (EA) on the proliferation of endogenous neural stem cells in the hippocampus of young mice with Alzheimer's disease (AD), so as to explore its mechanisms underlying improvement of AD.
Methods: Forty 1.5-month-old APP/PS1 transgenic male mice were randomly divided into an EA group and a model group, 20 mice in each group, and other 20 C57BL/6J male mice of the same age were used as the normal control group.
The aim of the present study was to investigate the effects of different courses of electroacupuncture on synaptic structure and synaptic function-related proteins expression in the hippocampal CA1 region of radiation-induced brain injury mice. Sixty C57BL/6J male mice were randomly divided into control group, radiation-induced brain injury model group, 1-week electroacupuncture group (EA1), 2-week electroacupuncture group (EA2), 3-week electroacupuncture group (EA3), and electroacupuncture-control (EA-Ctrl) group. The mice in model group were exposed to X-ray irradiation (8 Gy, 10 min) to establish radiation-induced brain injury model.
View Article and Find Full Text PDFObjective: To screen protein target in prevention and treatment with electroacupuncture (EA) for Alzheimer's disease (AD) and explore the potential mechanism of EA in prevention of AD.
Methods: A total of 40 APP/PS1 transgenic young male mice, 1.5-month old, were randomized into an EA group and a model group, 20 mice in each one, and 20 C57BL/6J mice were chosen as the normal control group.
Objective: To investigate the effect of electroacupuncture (EA) at "Baihui"(GV20), "Fengfu"(GV16) and bilateral "Shenshu"(BL23) on learning-memory ability, apoptosis in the hippocampus and expression of Aβ, Caspase 3, Bax and Bcl-2 proteins in the hippocampus and cerebral cortex in immature mice with Alzheimer's disease (AD), so as to explore its mechanism underlying improvement of AD.
Methods: Forty APP/PS1 transgenic male young mice were equally randomized into model and EA groups and 20 C57BL/6J male young mice were used as the normal control. EA (10 Hz, about 2 mA) was applied to GV20-BL23 and GV16-BL23 for 20 min, once daily, 6 days a week for 16 weeks.
The purpose of this study was to explore the effects of calcitonin gene-related peptide (CGRP) on the long-term depression (LTD) of hippocampus in mice. Sixty C57BL/6J mice (30 days old) were randomly divided into control group, three CGRP (50, 100, and 200 nmol/L) groups, CGRP + CGRP group and CGRP + APV group (10 mice for each group). The effects of exogenous application of different concentrations of CGRP on synaptic plasticity and LTD in hippocampus of mice were detected by in vitro recording of local field potential.
View Article and Find Full Text PDFObjective: To observe the influence of different courses of electroacupuncture (EA) intervention on recognition memory and the proliferation and differentiation of hippocampal neural stem cells in mice with radiation-induced brain injury, so as to explore its mechanisms underlying improving radiation-induced brain injury.
Methods: Se-venty 30-day old C57BL/6J mice were randomly divided into control, model and EA groups, and the latter two groups were further divided into 1 week (W), 2 W and 3 W subgroups (=10 in the control group and each subgroup). The ra-diation-induced brain injury model was established by radiating the mouse' left head at a dose of 8 Gy for 10 min by using a radiation linear accelerator.
The present study was aimed to investigate the effects and mechanisms of electro-acupuncture (EA) on proliferation and differentiation of neural stem cells in the hippocampus of C57 mice exposed to different doses of X-ray radiation. Thirty-day-old C57BL/6J mice were randomly divided into control, irradiation, and EA groups. The control group was not treated with irradiation.
View Article and Find Full Text PDFThe purpose of this study was to explore the effects of different concentrations of calcitonin gene-related peptide (CGRP) on long-term potentiation (LTP) in the hippocampus of mice. C57BL/6J mice (30 days old) were randomly divided into control group, three CGRP groups, and CGRP + CGRP group (10 mice for each group). Different concentrations of CGRP (50, 100 and 200 nmol/L) were given to the hippocampal slices of mice.
View Article and Find Full Text PDFAAPS PharmSciTech
February 2010
Subfragments of amyloid-beta (Abeta) appear to protect neurons from Alzheimer's disease (AD). The permeability of the blood-brain barrier (BBB) has limited in vivo research. The aim of this study is to explore permeation of the BBB by chitosan nanoparticles loaded with Abeta and to evaluate immunogenicity of these particles.
View Article and Find Full Text PDFImmunotherapy holds great promise for Alzheimer's disease (AD), but meningoencephalitis observed in the first AD vaccination trial, which accompanied T-lymphocytic infiltration, needs to be overcome. This study was aimed to investigate alternative approaches for a safer vaccine to treat AD. We used intramembranous fragment of amyloid-beta (IF-Abeta) to immunize Kunming mice for up to 2.
View Article and Find Full Text PDF