Publications by authors named "Songhua Ma"

Current additive manufacturing (AM) techniques for tungsten, such as powder bed fusion and directed energy deposition, often generate parts with rough surfaces. Vat photopolymerization presents a promising alternative for fabricating tungsten structures with high shape fidelity and low surface roughness. However, existing vat photopolymerization approaches suffer from surface defects and low final density, leading to compromised mechanical properties.

View Article and Find Full Text PDF

Additive manufacturing (AM) of copper through laser-based processes poses challenges, primarily attributed to the high thermal conductivity and low laser absorptivity of copper powder or wire as the feedstock. Although the use of copper salts in vat photopolymerization-based AM techniques has garnered recent attention, achieving micro-architected copper with high conductivity and density has remained elusive. In this study, we present a facile and efficient process to create complex 3D micro-architected copper structures with superior electrical conductivity and hardness.

View Article and Find Full Text PDF

The setting and adjustment of ventilator parameters need to rely on a large amount of clinical data and rich experience. This paper explored the problem of difficult decision-making of ventilator parameters due to the time-varying and sudden changes of clinical patient's state, and proposed an expert knowledge-based strategies for ventilator parameter setting and stepless adaptive adjustment based on fuzzy control rule and neural network. Based on the method and the real-time physiological state of clinical patients, we generated a mechanical ventilation decision-making solution set with continuity and smoothness, and automatically provided explicit parameter adjustment suggestions to medical personnel.

View Article and Find Full Text PDF

Background: Problem-based learning (PBL) is a widely adopted educational approach in medical education that aims to promote critical thinking and problem-solving in authentic learning situations. However, the impact of PBL educational mode on undergraduate medical students' clinical thinking ability has been limitedly investigated. This study aimed to assess the influence of an integrated PBL curriculum on clinical thinking ability of medical students prior to clinical practice.

View Article and Find Full Text PDF

Airborne particle pollution causes a range of respiratory and cardiovascular disorders by entering the human respiratory system through the breathing process. The administration of pharmaceutical particles by inhalation is another effective way to treat pulmonary illnesses. Studying particle deposition in the respiratory system during human breathing is crucial to maintaining human health.

View Article and Find Full Text PDF

The cellular and molecular actions of general anesthetics to induce anesthesia state and also cellular signaling changes for subsequent potential "long term" effects remain largely elusive. General anesthetics were reported to act on voltage-gated ion channels and ligand-gated ion channels. Here we used single-cell RNA-sequencing complemented with whole-cell patch clamp and calcium transient techniques to examine the gene transcriptome and ion channels profiling of sevoflurane and propofol, both commonly used clinically, on the human fetal prefrontal cortex (PFC) mixed cell cultures.

View Article and Find Full Text PDF

Accurate recognition of patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) is important for the subsequent treatment and rehabilitation. Recently, with the fast development of artificial intelligence (AI), AI-assisted diagnosis has been widely used. Feature selection as a key component is very important in AI-assisted diagnosis.

View Article and Find Full Text PDF

Machine learning-based models are widely used for neuroimage-based dementia recognition and achieve great success. However, most models omit the interpretability that is a very important factor regarding the confidence of a model. Takagi-Sugeno-Kang (TSK) fuzzy classifiers as the high interpretability and promising classification performance have widely used in many scenarios.

View Article and Find Full Text PDF

Compared with the traditional dental implant with screw structure, the root analogue implant (RAI) is customized to fit with the wall of the alveolar bone, which helps to accelerate the clinical implantation process. However, a solid RAI made of Ti6Al4V material has a much higher Young's modulus than the surrounding bone tissue, which can cause a stress shielding effect and thereby lead to implant failure. Also, a solid RAI is not conducive to the growth of osteoblasts.

View Article and Find Full Text PDF

For tissue engineering (TE), triply periodic minimal surfaces (TPMSs) have received widespread application, as they produce smooth surfaces and pore interconnectivity, which can satisfy the biological/mechanical requirements and efficiently construct many complex bone scaffolds. To control the microstructure of the scaffold and mimic the anisotropy of native tissue, a design approach for heterogeneous porous scaffolds is proposed in this paper. It is carried out by discretizing the original model using the conformal refinement of an all-hexahedral mesh and mapping the TPMS units to the mesh elements with the help of a shape function.

View Article and Find Full Text PDF

Cytosolic Ca(2+) overload induced by N-methyl-D-aspartate (NMDA) is one of the major causes for neuronal cell death during cerebral ischemic insult and neurodegenerative disorders. Previously, we have reported that the cytokine interleukin-6 (IL-6) reduces NMDA-induced cytosolic Ca(2+) overload by inhibiting both L-type voltage-gated calcium channel (L-VGCC) activity and intracellular Ca(2+) store release in cultured cerebellar granule neurons (CGNs). Here we aimed to show that NMDA-gated receptor channels (i.

View Article and Find Full Text PDF

Our previous work has shown that interleukin-6 (IL-6) implements its neuroprotective effect by inhibiting the intracellular Ca(2+) overload in neurons. Here, we examined whether regulation of L-type calcium channels (LCCs) activities is involved in the neuroprotective action of IL-6. In cultured cerebellar granule neurons (CGNs), patch-clamp recording showed that the whole-cell Ca(2+) current and LCC current were significantly reduced by IL-6 pretreatment (120 ng/ml, for 24 h).

View Article and Find Full Text PDF

Previous studies have shown an excitatory effect of histamine on neurons in two cerebellar nuclei, the fastigial nucleus and the interposed nucleus. Here we investigated action of histamine on the dentate nucleus (DN), another nucleus of the cerebellum, and provided more evidence for motor control by histamine via the cerebellum. Spontaneous unitary discharge of neurons in the DN was extracellularly recorded by use of cerebellar slice preparations.

View Article and Find Full Text PDF

We have previously shown that interleukin-6 (IL-6)-protected neurons against the suppression of neuronal vitality and overload of intracellular Ca(2+) induced by glutamate or N-methyl-D: -aspartate (NMDA). Herein we provide further evidence for IL-6 neuroprotection against NMDA-induced apoptosis and explore the signal-transduction mechanisms underlying the anti-apoptotic action of IL-6. Cerebellar granule neurons (CGNs) from postnatal 8-day infant rats were chronically exposed to IL-6 (40 or 120 ng/ml) for 8 days, and stimulated with NMDA (100 μM) for 30 min.

View Article and Find Full Text PDF