Materials (Basel)
November 2024
Customizing and optimizing lattice materials poses a challenge to designers. This study proposed a data-driven generative method to customize and optimize lattice material. The method utilizes subdivision modeling to parametrically describe lattice morphologies and skeletons.
View Article and Find Full Text PDFIn practical applications, polyurethane (PU) foam must be rigid to meet the demands of various industries and provide comfort and protection in everyday life. PU foam components are extensively used in structural foam, thermal insulation, decorative panels, packaging, imitation wood, and floral foam, as well as in models and prototypes. Conventional technology for producing PU foam parts often leads to defects such as deformation, short shots, entrapped air, warpage, flash, micro-bubbles, weld lines, and voids.
View Article and Find Full Text PDFThe sintering mold imposes strict requirements for temperature uniformity. The mold geometric parameters and the power configuration of heating elements exert substantial influence. In this paper, we introduce an optimization approach that combines response surface models with the sequential quadratic programming algorithm to optimize the geometric parameters and heating power configuration of a heating system for sintering mold.
View Article and Find Full Text PDFPolylactic acid (PLA) stands out as a biomaterial with immense potential, primarily owing to its innate biodegradability. Conventional methods for manufacturing PLA encompass injection molding or additive manufacturing (AM). Yet, the fabrication of sizable medical devices often necessitates fragmenting them into multiple components for printing, subsequently requiring reassembly to accommodate the constraints posed by the dimensions of the AM platform.
View Article and Find Full Text PDFMicromachines (Basel)
March 2024
In response to the increasing demand for high-performance capacitors, with a simultaneous emphasis on minimizing their physical size, a common practice involves etching deep vias and coating them with functional layers to enhance operational efficiency. However, these deep vias often cause warpages during the processing stage. This study focuses on the numerical modeling of wafer warpage that occurs during the deposition of three thin layers onto these vias.
View Article and Find Full Text PDFA conformal cooling channel (CCC) follows the mold core or cavity profile to carry out uniform cooling in the cooling stage. However, the significant pressure drop along the cooling channels is a distinct disadvantage of the CCC. In this study, an innovative waterfall cooling channel (WCC) was proposed and implemented.
View Article and Find Full Text PDFPolyether ether ketone (PEEK) is frequently employed in biomedical engineering due to its biocompatibility. Traditionally, PEEK manufacturing methods involve injection molding, compression molding, additive manufacturing, or incremental sheet forming. Few studies have focused on rotational friction welding (RFW) with PEEK plastics.
View Article and Find Full Text PDFPolymers (Basel)
November 2023
Three-dimensional printing is widely used for manufacturing a variety of functional components. However, the 3D printing machine substantially limits the size of the functional components. Rotary friction welding (RFW) is a possible solution to this problem.
View Article and Find Full Text PDFPolyetheretherketone (PEEK) is a promising biomaterial due to its excellent mechanical properties. Most PPEK manufacturing methods include additive manufacturing, injection molding, grinding, pulse laser drilling, or incremental sheet forming. Rotary friction welding (RFW) is a promising bonding technique in many industries.
View Article and Find Full Text PDFRotary friction welding (RFW) has no electric arc and the energy consumption during welding can be reduced as compared with conventional arc welding since it is a solid-phase welding process. The RFW is a sustainable manufacturing process because it provides low environmental pollution and energy consumption. However, few works focus on the reliability of dissimilar polymer rods fabricated via RFW.
View Article and Find Full Text PDFTo enhance the productivity and quality of optical-grade liquid silicone rubber (LSR) and an optical convex lens simultaneously, uniform vulcanization of the molding material is required. However, little has been reported on the uniform vulcanization of LSR in the heated cavity. This paper presents a conformal heating channel to enhance the temperature uniformity of the mold surface in the LSR injection molding.
View Article and Find Full Text PDFPurpose: In this study, we investigated the effects of mirror therapy (MT) combined with contralaterally controlled functional electrical stimulation (CCFES) on upper limb motor function, activities of daily life, and corticospinal excitability in post-stroke patients.
Methods: Sixty post-stroke patients were randomly divided into four groups: CCFES, MT, MT combined with CCFES, and control. All the patients underwent routine rehabilitation.
Objective: This study aimed to compare the efficacy of contralaterally controlled functional electrical stimulation (CCFES) vs. neuromuscular electrical stimulation (NMES) for motor recovery of the lower extremity in patients with subacute stroke.
Materials And Methods: Seventy patients within 6 months post-stroke were randomly assigned to the CCFES group ( = 35) and the NMES group ( = 35).
Purpose: No combined immunotherapy and antiangiogenic therapy have been investigated in exclusively programmed death-ligand 1 (PD-L1)-positive advanced cervical cancer (CA). We investigated the efficacy and safety of sintilimab plus anlotinib as second-line or later therapy for PD-L1-positive recurrent or metastatic (R/M) CA.
Patients And Methods: Patients with PD-L1-positive (Combined Positive Score ≥ 1) R/M CA who progressed after at least one prior systemic chemotherapeutic regimen or could not tolerate chemotherapy were eligible for the phase II trial.
Purpose: To compare the effectiveness of contralaterally controlled functional electrical stimulation (CCFES) versus neuromuscular electrical stimulation (NMES) on motor recovery of the upper limb in subacute stroke patients.
Materials And Methods: Fifty patients within six months poststroke were randomly assigned to the CCFES group ( = 25) and the NMES group ( = 25). Both groups underwent routine rehabilitation plus 20-minute stimulation on wrist extensors per day, five days a week, for 3 weeks.
Motor recovery of wrist and fingers is still a great challenge for chronic stroke survivors. The present study aimed to verify the efficiency of motor imagery based brain-computer interface (BCI) control of continuous passive motion (CPM) in the recovery of wrist extension due to stroke. An observational study was conducted in 26 chronic stroke patients, aged 49.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) transplantation has been proposed as a promising means for ischemic heart disease. Vascular endothelial growth factor (VEGF) has been demonstrated to play an important role in MSCs transplantation. Angiotensin II (AngII), the most important effector peptide of the renin-angiotensin system (RAS), is also an angiogenesis factor.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2008
Angiogenesis is essential for transplantation of mesenchymal stem cells (MSCs). Vascular endothelial growth factor (VEGF) is one of the most potent angiogenic factors identified to date. Elevated VEGF levels in MSCs correlate with the potential of MSCs transplantation.
View Article and Find Full Text PDF