Publications by authors named "Songbi Chen"

Amyloplasts are the sites of starch synthesis and accumulation. Little is known about amyloplast division and its effects on the size, structure, and physicochemical properties of starch granules. In this study, we created mutants of plastid division-related gene MeMinD by CRISPR/Cas9 technology, leading to the disruption of normal division of amyloplasts in cassava storage roots.

View Article and Find Full Text PDF

Cassava ( Crantz) is used as a biomass energy material and an effective supplement for food and feed. Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step of lignin biosynthesis and is responsible for various stresses. However, systematic investigations of the gene family in cassava have been poorly understood.

View Article and Find Full Text PDF

The significant reduction in cassava ( Crantz) yields attributed to cassava bacterial blight (CBB) constitutes an urgent matter demanding prompt attention. The current study centered on the MebHLH149 transcription factor, which is acknowledged to be reactive to CBB and exhibits augmented expression levels, as indicated by laboratory transcriptome data. Our exploration, encompassing pv.

View Article and Find Full Text PDF

The objective of this study was to explore the preservation of food products through the co-fermentation of whole-plant cassava and (PS) without additives. We assessed fermentation quality, antioxidant activity, bacterial community structure, function profile, and microbial ecological network features. Our results demonstrate that co-fermentation of whole-plant cassava with 10% PS significantly improves food quality.

View Article and Find Full Text PDF

Background: Metabolites play critical roles in regulating nutritional qualities of plants, thereby influencing their consumption and human health. However, the genetic basis underlying the metabolite-based nutrient quality and domestication of root and tuber crops remain largely unknown.

Results: We report a comprehensive study combining metabolic and phenotypic genome-wide association studies to dissect the genetic basis of metabolites in the storage root (SR) of cassava.

View Article and Find Full Text PDF

Cassava ( Crantz) foliage is a byproduct of cassava production characterized by high biomass and nutrient content. In this study, we investigated the effects of cassava foliage on antioxidant capacity, growth performance, and immunity status in goats, as well as rumen fermentation and microbial metabolism. Twenty-five Hainan black goats were randomly divided into five groups ( = 5 per group) and accepted five treatments: 0% (T1), 25% (T2), 50% (T3), 75% (T4), and 100% (T5) of the cassava foliage silage replaced king grass, respectively.

View Article and Find Full Text PDF

The 14-3-3 protein family is a highly conservative member of the acid protein family and plays an important role in regulating a series of important biological activities and various signal transduction pathways. The role of 14-3-3 proteins in regulating starch accumulation still remains largely unknown. To investigate the properties of 14-3-3 proteins, the structures and functions involved in starch accumulation in storage roots were analyzed, and consequently, 16 genes were identified.

View Article and Find Full Text PDF

Postharvest damage makes cassava roots vulnerable to pathogen infections and decay, which significantly hinders the development of the cassava industry. The objective of this study was to assess the antibacterial properties of chitosan in vitro, as well as its effect on wound healing and resistance in cassava roots. The findings demonstrated that the bacteriostatic effect of chitosan became increasingly prominent as the concentration of chitosan enhanced.

View Article and Find Full Text PDF

Cassava ( Crantz) leaves are often used as vegetables in Africa. Anthocyanins possess antioxidant, anti-inflammatory, anti-cancer, and other biological activities. They are poor in green leaves but rich in the purple leaves of cassava.

View Article and Find Full Text PDF

Fruit cracking decreases the total production and the commercial value of watermelon. The molecular mechanisms of fruit cracking are unknown. In this study, 164 recombinant inbred lines (RILs) of watermelon, derived from the crossing of the WQ1 (cracking-sensitive) and WQ2 (cracking-tolerant) lines, were sequenced using specific length amplified fragment sequencing (SLAF-seq).

View Article and Find Full Text PDF

Background: Magnesium chelatase plays an important role in photosynthesis, but only a few subunits have been functionally characterized in cassava.

Results: Herein, MeChlD was successfully cloned and characterized. MeChlD encodes a magnesium chelatase subunit D, which has ATPase and vWA conservative domains.

View Article and Find Full Text PDF

Background: Cassava (Manihot esculenta Crantz) is widely planted in tropical and several subtropical regions in which drought, high temperatures, and other abiotic stresses occur. Metallothionein (MT) is a group of conjugated proteins with small molecular weight and rich in cysteine. These proteins play a substantial role in response to physiological stress through the regulation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

As a starchy and edible tropical plant, cassava ( Crantz) has been widely used as an industrial raw material and a dietary source. However, the metabolomic and genetic differences in specific germplasms of cassava storage root were unclear. In this study, two specific germplasms, Crantz cv.

View Article and Find Full Text PDF

The reactive oxygen species (ROS) signal regulates stress-induced leaf abscission in cassava. The relationship between the function of the cassava transcription factor gene and low temperature-induced leaf abscission is still unclear. Here, we report that , a transcription factor, involved in regulating low temperature-induced leaf abscission in cassava.

View Article and Find Full Text PDF

The two-spotted spider mite (TSSM) is a destructive cassava pest. Intensive demonstration of resistance mechanism greatly facilitates the creation of TSSM-resistant cassava germplasm. Gene to metabolite network plays a crucial role in modulating plant resistance, but little is known about the genes and related metabolites which are responsible for cassava resistance to TSSM.

View Article and Find Full Text PDF

The basic helix-loop-helix (bHLH) proteins are a large superfamily of transcription factors, and play a central role in a wide range of metabolic, physiological, and developmental processes in higher organisms. However, systematic investigation of gene family in cassava ( Crantz) has not been reported. In the present study, we performed a genome-wide survey and identified 148 s genes were unevenly harbored in 18 chromosomes.

View Article and Find Full Text PDF

Soil microbes play an important role in the ecosystem and have a relationship with plant growth, development, and production. There are only a few reports on the effects of planting patterns of cassava on the microbial community structure in the rhizospheric soil. Here, we investigated the effects of different fertilization on the microbial community structure in the cassava rhizospheric soil.

View Article and Find Full Text PDF

Background: Heterozygous genomes are widespread in outcrossing and clonally propagated crops. However, the variation in heterozygosity underlying key agronomic traits and crop domestication remains largely unknown. Cassava is a staple crop in Africa and other tropical regions and has a highly heterozygous genome.

View Article and Find Full Text PDF

In Asia, cassava () is cultivated by more than 8 million farmers, driving the rural economy of many countries. The International Center for Tropical Agriculture (CIAT), in partnership with national agricultural research institutes (NARIs), instigated breeding and agronomic research in Asia, 1983. The breeding program has successfully released high-yielding cultivars resulting in an average yield increase from 13.

View Article and Find Full Text PDF

Endophytes colonize tissues of healthy host plants and play a crucial role in plant growth and development. However, little attention has been paid to the endophytes of tuber crops such as cassava, which is used as a staple food by approximately 800 million people worldwide. This study aimed to elucidate the diversity and composition of endophytic bacterial and fungal communities in different cassava cultivars using high-throughput sequencing.

View Article and Find Full Text PDF

Class I α-mannosidases (MNSs) play important roles in protein N-glycosylation. However, no data are currently available about MNSs in cassava (), of which the functions are therefore not known, particularly in relevance to postharvest physiological deterioration (PPD). A total of seven genes were identified from the cassava genome in the present study.

View Article and Find Full Text PDF

The underlying mechanisms of the higher photosynthetic efficiency of cultivated cassava relative to its wild species are poorly understood. In the present study, proteins in leaves and chloroplasts were analyzed to compare the differences among the cultivar SC205, its wild ancestor W14, and the related species Glaziovii. The functions of differential proteins are associated with 10 ontology groups including photosynthesis, carbohydrate and energy metabolism, as well as potential signal pathway.

View Article and Find Full Text PDF

Background: Polyploidization, pervasive among higher plant species, enhances adaptation to water deficit, but the physiological and molecular advantages need to be investigated widely. Long non-coding RNAs (lncRNAs) are involved in drought tolerance in various crops.

Results: Herein, we demonstrate that tetraploidy potentiates tolerance to drought stress in cassava (Manihot esculenta Crantz).

View Article and Find Full Text PDF

Cassava mosaic disease, one of the ten most economically important crop viral diseases in the world, was first reported in Southeast Asia from a single plantation in Cambodia in 2015. To determine the presence and incidence of Sri Lankan cassava mosaic virus (SLCMV) one year after first detection, a total of 6,480 samples from 419 fields were systematically collected from cassava production areas across Cambodia (3,840 samples; 240 fields) and Vietnam (2,640samples; 179 fields) in the 2016 cropping season. Using PCR-based diagnostics, we identified 49 SLCMV-infected plants from nine fields, representing 2% of the total number of fields sampled.

View Article and Find Full Text PDF