IEEE J Biomed Health Inform
January 2023
Deep learning techniques can help minimize inter-physician analysis variability and the medical expert workloads, thereby enabling more accurate diagnoses. However, their implementation requires large-scale annotated dataset whose acquisition incurs heavy time and human-expertise costs. Hence, to significantly minimize the annotation cost, this study presents a novel framework that enables the deployment of deep learning methods in ultrasound (US) image segmentation requiring only very limited manually annotated samples.
View Article and Find Full Text PDFBackground: Numerous traditional filtering approaches and deep learning-based methods have been proposed to improve the quality of ultrasound (US) image data. However, their results tend to suffer from over-smoothing and loss of texture and fine details. Moreover, they perform poorly on images with different degradation levels and mainly focus on speckle reduction, even though texture and fine detail enhancement are of crucial importance in clinical diagnosis.
View Article and Find Full Text PDFComput Biol Med
October 2022
Background: In recent years, deep learning techniques have demonstrated promising performances in echocardiography (echo) data segmentation, which constitutes a critical step in the diagnosis and prognosis of cardiovascular diseases (CVDs). However, their successful implementation requires large number and high-quality annotated samples, whose acquisition is arduous and expertise-demanding. To this end, this study aims at circumventing the tedious, time-consuming and expertise-demanding data annotation involved in deep learning-based echo data segmentation.
View Article and Find Full Text PDF