Publications by authors named "Songan Shang"

Rationale And Objectives: Parkinson's disease (PD) shows small structural changes in nigrostriatal pathways, which can be sensitively captured through diffusion kurtosis imaging (DKI). However, the value of DKI and its radiomic features in the classification performance of PD still need confirmation. This study aimed to compare the diagnostic efficiency of DKI-derived kurtosis metric and its radiomic features with different machine learning models for PD classification.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated microstructural changes in Parkinson's disease (PD) using diffusion kurtosis imaging (DKI) to better understand the brain's alterations at a micro level.
  • It compared the grey matter microstructure between PD patients and healthy controls, revealing significant differences in structural connectivity and network patterns in the PD group.
  • The results highlighted disrupted connections in key brain areas and confirmed DKI's potential as a diagnostic tool for exploring the neurodegenerative processes in Parkinson's disease.
View Article and Find Full Text PDF

Purpose: This study aimed to assess the glymphatic function and its correlation with clinical characteristics and the loss of dopaminergic neurons in Parkinson's disease (PD) using hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI) combined with diffusion tensor image analysis along the perivascular space (DTI-ALPS), choroid plexus volume (CPV), and enlarged perivascular space (EPVS) volume.

Methods: Twenty-five PD patients and thirty matched healthy controls (HC) participated in the study. All participants underwent F-fluorodopa (F-DOPA) PET-MRI scanning.

View Article and Find Full Text PDF
Article Synopsis
  • * It found that HOFC networks provided better classification accuracy, sensitivity, and specificity in distinguishing patients with presbycusis from healthy controls compared to LOFC networks.
  • * Significant topological differences were identified in the brain networks of both groups, particularly a specific subnetwork in the HOFC networks of patients with presbycusis, indicating potential brain network abnormalities that could aid in diagnosis.
View Article and Find Full Text PDF

Purpose: The purpose of this study was to analyze the intracerebral abnormalities of hemodynamics in patients with Parkinson's disease (PD) through arterial spin labelling (ASL) technique with multi-delay ASL (MDASL) and conventional single-delay ASL (SDASL) protocols and to verify the potential clinical application of these features for the diagnosis of PD.

Materials And Methods: Perfusion data of the brain obtained using MDASL and SDASL in patients with PD were compared to those obtained in healthy control (HC) subjects. Intergroup comparisons of z-scored cerebral blood flow (zCBF), arterial transit time (zATT) and cerebral blood volume (zCBV) were performed via voxel-based analysis.

View Article and Find Full Text PDF

Parkinson's disease (PD) is manifested with disrupted topology of the structural connection network (SCN) and the functional connection network (FCN). However, the SCN and its interactions with the FCN remain to be further investigated. This multimodality study attempted to precisely characterize the SCN using diffusion kurtosis imaging (DKI) and further identify the neuropathological pattern of SCN-FCN decoupling, underscoring the neurodegeneration of PD.

View Article and Find Full Text PDF

Background: This study was conducted to investigate topological changes in large-scale functional connectivity (FC) and structural connectivity (SC) networks in acute mild traumatic brain injury (mTBI) and determine their potential relevance to cognitive impairment.

Methods: Seventy-one patients with acute mTBI (29 males, 42 females, mean age 43.54 years) from Nanjing First Hospital and 57 matched healthy controls (HC) (33 males, 24 females, mean age 46.

View Article and Find Full Text PDF

Aims: This study aimed to characterize the topological alterations and classification performance of high-order functional connectivity (HOFC) networks in cognitively preserved patients with Parkinson's disease (PD), relative to low-order FC (LOFC) networks.

Methods: The topological metrics of the constructed networks (LOFC and HOFC) obtained from fifty-one cognitively normal patients with PD and 60 matched healthy control subjects were analyzed. The discriminative abilities were evaluated using machine learning approach.

View Article and Find Full Text PDF

Background: Aberrant brain blood perfusion changes have been found to play an important role in the progress of Alzheimer's disease (AD) and Parkinson's disease with dementia (PDD). However, the convergent and divergent patterns in brain perfusion between two dementias remain poorly documented.

Objective: To explore the impaired brain perfusion pattern and investigate their overlaps and differences between AD and PDD using normalized cerebral blood flow (CBF).

View Article and Find Full Text PDF

Background: Mild traumatic brain injury (mTBI) is typically characterized by temporally limited cognitive impairment and regarded as a brain connectome disorder. Recent findings have suggested that a higher level of organization named the "rich-club" may play a central role in enabling the integration of information and efficient communication across different systems of the brain. However, the alterations in rich-club organization and hub topology in mTBI and its relationship with cognitive impairment after mTBI have been scarcely elucidated.

View Article and Find Full Text PDF

Purpose: Presbycusis is characterized by bilateral sensorineural hearing loss at high frequencies and is often accompanied by cognitive decline. This study aimed to identify the topological reorganization of brain functional network in presbycusis with/without cognitive decline by using graph theory analysis approaches based on resting-state functional magnetic resonance imaging (rs-fMRI).

Methods: Resting-state fMRI scans were obtained from 30 presbycusis patients with cognitive decline, 30 presbycusis patients without cognitive decline, and 50 age-, sex-, and education-matched healthy controls.

View Article and Find Full Text PDF

Pathological process in Parkinson's disease (PD) is accompanied with functional and metabolic alterations. The time-varying properties of functional coherence and their coupling to regional perfusion are still rarely elucidated. To investigate early disruption of dynamic regional homogeneity (dReho) and neurovascular coupling in cognitively normal PD patients, dynamic neuronal synchronization and regional perfusion were measured using dReho and cerebral blood flow (CBF), respectively.

View Article and Find Full Text PDF

This study was performed to investigate the regional cerebral blood flow (CBF) and CBF connectivity in the chemotherapy-induced cognitive impairment of patients with lung cancer by using arterial spin labeling. Pseudocontinuous arterial spin labeling perfusion magnetic resonance imaging and neuropsychological tests were performed for 21 patients with non-small cell lung cancer who had received chemotherapy CT (+) and 25 non-small cell lung cancer patients who need chemotherapy but did not yet received CT (-). The CT (+) group previously received platinum-based therapy for 3 months to 6 months (the time from their first chemotherapy to the MRI scan).

View Article and Find Full Text PDF

This study aimed to investigate abnormal static and dynamic functional network connectivity (FNC) and its association with cognitive function in patients with presbycusis. In total, 60 patients with presbycusis and 60 age-, sex-, and education-matched healthy controls (HCs) underwent resting-state functional MRI (rs-fMRI) and cognitive assessments. Group independent component analysis (ICA) was carried out on the rs-fMRI data, and eight resting-state networks (RSNs) were identified.

View Article and Find Full Text PDF

Cognitive deficits are prominent non-motor symptoms in Parkinson's disease (PD) and have been shown to involve the neurovascular unit (NVU). However, there is a lack of sufficient neuroimaging research on the associated modulating mechanisms. The objective of this study was to identify the contribution of neurovascular decoupling to the pathogenesis of cognitive decline in PD.

View Article and Find Full Text PDF

Background: Post-traumatic headache (PTH) is a very common symptom following mild traumatic brain injury (mTBI), yet much remains unknown about the underlying pathophysiological mechanisms of PTH. Neuroimaging studies suggest that aberrant functional network connectivity (FNC) may be an important factor in pain disorders. The present study aimed to investigate the functional characteristics of static FNC (sFNC) and dynamic FNC (dFNC) in mTBI patients with PTH.

View Article and Find Full Text PDF

This study aimed to investigate alterations of brain functional network connectivity (FNC) in lung cancer patients after chemotherapy and explore links between these FNC differences and cognitive impairment. Twenty-two lung cancer patients receiving chemotherapy and 26 healthy controls (HCs) underwent resting-state functional MRI (rs-fMRI) and neuropsychological testing. Group independent component analysis (GICA) was applied to rs-fMRI data to extract whole-brain resting state networks (RSNs).

View Article and Find Full Text PDF

The central nervous mechanism of acute tinnitus is different from that of chronic tinnitus, which may be related to the difference of cerebral blood flow (CBF) perfusion in certain regions. To verify this conjecture, we used arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) in this study to compare the CBF alterations of patients with acute and chronic tinnitus. The current study included patients with chronic tinnitus ( = 35), acute tinnitus ( = 30), and healthy controls ( = 40) who were age-, sex-, and education-matched.

View Article and Find Full Text PDF

Purpose: The reorganization of the limbic regions extend to general cognitive network is believed to exist in the chronicity of tinnitus with particular 'hubs' contributing to a 'noise-cancellation' mechanism. To test this hypothesis, we investigated the topological brain network of tinnitus in different periods.

Methods: Resting-state functional magnetic resonance imaging were obtained from 32 patients with acute tinnitus, 41 patients with chronic tinnitus and 60 age- and gender- matched healthy controls (HC).

View Article and Find Full Text PDF

Dopamine depletion and microstructural degradation underlie the neurodegenerative processes in Parkinson's disease (PD). To explore early alterations and underlying associations of dopamine and microstructure in PD patients utilizing the hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI). Twenty-five PD patients in early stages and twenty-four matched healthy controls underwent hybrid F-fluorodopa (DOPA) PET-diffusion tensor imaging (DTI) scanning.

View Article and Find Full Text PDF

This study aimed to detect alterations in intra- and inter-network functional connectivity (FC) of multiple networks in acute brainstem ischemic stroke patients, and the relationship between FC and movement assessment scores to assess their ability to predict upper extremity motor impairment. Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from acute brainstem ischemic stroke patients (n = 50) and healthy controls (HCs) (n = 45). Resting-state networks (RSNs) were established based on independent component analysis (ICA) and the functional network connectivity (FNC) analysis was performed.

View Article and Find Full Text PDF

The aim of this study was to investigate the abnormities in functional connectivity (FC) within each modular network and between modular networks in patients with systemic lupus erythematosus (SLE). Twelve meaningful modular networks were identified via independent component analysis from 41 patients and 40 volunteers. Parametric tests were used to compare the intra- and intermodular FC between the groups.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate differences in static and dynamic functional network connectivity (FNC) and explore their association with neurocognitive performance in acute mild traumatic brain injury (mTBI).

Methods: A total of 76 patients with acute mTBI and 70 age-matched and sex-matched healthy controls were enrolled (age 43.79 ± 10.

View Article and Find Full Text PDF

This study aimed to explore the topological features of brain functional network in lung cancer patients before and after chemotherapy using graph theory. Resting-state functional magnetic resonance imaging scans were obtained from 44 post-chemotherapy and 46 non-chemotherapy patients as well as 49 healthy controls (HCs). All groups were age- and gender-matched.

View Article and Find Full Text PDF

Background: Mild cognitive impairment (MCI) has been defined as the prodromal stage of Alzheimer's disease and Parkinson's disease (PD) with dementia. We investigated the differences in regional perfusion properties among MCI subtypes and healthy control (HC) subjects by using arterial spin labeling (ASL).

Methods: Regional normalized CBF (z-CBF) and CBF-connectivity were analyzed from ASL data in 44 amnestic MCI (aMCI) patients, 42 PD-MCI patients, and 50 matched HC participants.

View Article and Find Full Text PDF