It is generally accepted that nitric oxide (NO) or its derivatives, reactive nitrogen species (RNS), are involved in the development of Parkinson's disease (PD). Recently, emerging evidence in the study of PD has indicated that protein S-nitrosylation triggers the signaling changes in neurons. In this study, SH-SY5Y cells treated with rotenone were used as a model of neuronal death in PD.
View Article and Find Full Text PDFMitochondria are the primary organelles that consume oxygen and provide energy for cellular activities. To investigate the mitochondrial mechanisms underlying adaptation to extreme oxygen conditions, we generated Drosophila strains that could survive in low- or high-oxygen environments (LOF or HOF, respectively), examined their mitochondria at the ultrastructural level via transmission electron microscopy, studied the activity of their respiratory chain complexes, and quantitatively analyzed the protein abundance responses of the mitochondrial proteomes using Isobaric tag for relative and absolute quantitation (iTRAQ). A total of 718 proteins were identified with high confidence, and 55 and 75 mitochondrial proteins displayed significant differences in abundance in LOF and HOF, respectively, compared with the control flies.
View Article and Find Full Text PDFChronic hypoxia (CH) occurs under certain physiological or pathological conditions, including in people who reside at high altitude or suffer chronic cardiovascular or pulmonary diseases. As mitochondria are the predominant oxygen-consuming organelles to generate ATP through oxidative phosphorylation in cells, their responses, through structural or molecular modifications, to limited oxygen supply play an important role in the overall functional adaptation to hypoxia. Here, we report the adaptive mitochondrial ultrastructural modifications and the functional impacts in a recently generated hypoxia-adapted Drosophila melanogaster strain that survives severe, otherwise lethal, hypoxic conditions.
View Article and Find Full Text PDFAim: To survey glutathione (GSH) S-transferase (GST) isoforms in mitochondria and to reveal the isoforms' biological significance in diabetic mice.
Methods: The presence of GSTs in mouse liver mitochondria was systematically screened by two proteomic approaches, namely, GSH affinity chromatography/two dimensional electrophoresis (2DE/MALDI TOF/TOF MS) and SDS-PAGE/LC ESI MS/MS. The proteomic results were further confirmed by Western blotting using monoclonal antibodies against GSTs.
Mitochondrial preparation is a key technique in the study of mitochondria. Growing evidence has demonstrated that mitochondrial proteins are tissue or cell type dependent. Locating the proteins in the global presence of mitochondrial membranes is a primary consideration in adopting antibodies for affinity enrichment of mitochondria on a micro scale.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2011
Two tyrosine residues (Tyr(4) and Tyr(76)) of succinyl-CoA:3-oxoacid CoA transferase (SCOT) are sensitive to nitric oxide (NO) stress, as assessed by mass spectrometry and site-direct mutagenesis. However, monitoring the SCOT nitration in tissue or cells is challenging. Herein, we describe the development of an assay to detect nitrated SCOT directly using site-specific antibodies; the monoclonal antibodies were generated and screened against nitrated peptides of SCOT.
View Article and Find Full Text PDFSci China Life Sci
January 2011
Mitochondrion plays the key functions in mammalian cells. It is believed that mitochondrion exerts the common biologic functions in many tissues, but also performs some specific functions correspondent with tissues where it is localized. To identify the tissue-specific mitochondrial proteins, we carried out a systematic survey towards mitochondrial proteins in the tissues of C57BL/6J mouse, such as liver, kidney and heart.
View Article and Find Full Text PDF