The infiltration of tumor-associated macrophages (TAMs) is associated with extensive angiogenesis, which contributes to a poor prognosis in breast cancer. However, anti-angiogenic therapy with VEGF-specific monotherapy has been unsuccessful in treating breast cancer, and the molecular mechanisms associated with chemoresistance remain unclear. Here, we investigated whether CCL18, a chemokine produced by TAMs, can stimulate angiogenesis in breast cancer, as well as the underlying mechanisms.
View Article and Find Full Text PDFThis study investigated the role of perivascular adipose tissue (PVAT) in the beneficial effects of andrographolide on vascular reactivity in endotoxaemic rats. After being challenged by lipopolysaccharide (4 mg/kg intraperitoneally), the rats were treated with andrographolide (1 mg/kg intraperitoneally). The response to phenylephrine of aortic rings with or without PVAT was recorded.
View Article and Find Full Text PDFA major obstacle to developing small interfering RNAs (siRNAs) as cancer drugs is their intracellular delivery to disseminated cancer cells. Fusion proteins of single-chain fragmented antibodies (ScFvs) and positively charged peptides deliver siRNAs into specific target cells. However, the therapeutic potential of ScFv-mediated siRNA delivery has not been evaluated in cancer.
View Article and Find Full Text PDFCombination of two or more therapeutic strategies with different mechanisms can cooperatively prohibit cancer development. Combination of chemotherapy and small interfering RNA (siRNA)-based therapy represents an example of this approach. Hypothesizing that the chemotherapeutic drug and the siRNA should be simultaneously delivered to the same tumoral cell to exert their synergistic effect, the development of delivery systems that can efficiently encapsulate two drugs and successfully deliver payloads to targeted sites via systemic administration has proven to be challenging.
View Article and Find Full Text PDF