Disseminated cancer cells in the peritoneal fluid often colonize omental fat-associated lymphoid clusters but the mechanisms are unclear. Here, we identify that innate-like B cells accumulate in the omentum of mice and women with early-stage ovarian cancer concomitantly with the extrusion of chromatin fibers by neutrophils called neutrophil extracellular traps (NETs). Studies using genetically modified NET-deficient mice, pharmacologic inhibition of NETs, and adoptive B cell transfer show that NETs induce expression of the chemoattractant CXCL13 in the pre-metastatic omentum, stimulating recruitment of peritoneal innate-like B cells that in turn promote expansion of regulatory T cells and omental metastasis through producing interleukin (IL)-10.
View Article and Find Full Text PDFFront Mol Biosci
February 2024
Extracellular microRNAs (miRNAs) can be detected in body fluids and hold great potential as cancer biomarkers. Extracellular miRNAs are protected from degradation by binding various proteins and through their packaging into extracellular vesicles (EVs). There is evidence that the diagnostic performance of cancer-associated extracellular miRNAs can be improved by assaying EV-miRNA instead of total cell-free miRNA, but several challenges have hampered the advancement of EV-miRNA in liquid biopsy.
View Article and Find Full Text PDFThe omentum contains immune cell structures called milky spots that are niches for transcoelomic metastasis. It is difficult to remove the omentum completely, and there are no effective strategies to minimize the risk of colonization of preserved omental tissues by cancer cells that circulate in the peritoneal fluid. Normal saline is commonly administered into the peritoneal cavity for diagnostic and intraoperative lavage.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are ideal for liquid biopsy, but distinguishing cancer cell-derived EVs and subpopulations of biomarker-containing EVs in body fluids has been challenging. Here, we identified that the glycoproteins CD147 and CD98 define subpopulations of EVs that are distinct from classical tetraspanin EVs in their biogenesis. Notably, we identified that CD147 EVs have substantially higher microRNA (miRNA) content than tetraspanin EVs and are selectively enriched in miRNA through the interaction of CD147 with heterogeneous nuclear ribonucleoprotein A2/B1.
View Article and Find Full Text PDFThe tumor vasculature is essential for tumor growth and metastasis, and is a prime target of several anti-cancer agents. Increasing evidence indicates that tumor angiogenesis is stimulated by extracellular vesicles (EVs) that are secreted or shed by cancer cells. These EVs encapsulate a variety of biomolecules with angiogenic properties, and have been largely thought to stimulate vessel formation by transferring this luminal cargo into endothelial cells.
View Article and Find Full Text PDFCancer-derived small extracellular vesicles (sEVs) induce stromal cells to become permissive for tumor growth. However, it is unclear whether this induction solely occurs through transfer of vesicular cargo into recipient cells. Here we show that cancer-derived sEVs can stimulate endothelial cell migration and tube formation independently of uptake.
View Article and Find Full Text PDFOvarian cancer preferentially metastasizes to the omentum, a fatty tissue characterized by immune structures called milky spots, but the cellular dynamics that direct this tropism are unknown. Here, we identified that neutrophil influx into the omentum is a prerequisite premetastatic step in orthotopic ovarian cancer models. Ovarian tumor-derived inflammatory factors stimulated neutrophils to mobilize and extrude chromatin webs called neutrophil extracellular traps (NETs).
View Article and Find Full Text PDFOvarian cancers often highly express inflammatory cytokines and form implants throughout the peritoneal cavity. However, the mechanisms that drive inflammatory signaling and peritoneal metastasis of ovarian cancer are poorly understood. We previously identified that high expression of DLX4, a transcription factor encoded by a homeobox gene, is associated with reduced survival of ovarian cancer patients.
View Article and Find Full Text PDFCancer Cell Microenviron
November 2014
The lethality of ovarian cancer stems from its propensity to involve the peritoneal cavity. However, the mechanisms that enable ovarian cancer cells to readily adapt to the peritoneal environment are not well understood. Here, we describe our recent studies in which we identified the mechanisms by which the transcription factor encoded by the patterning gene promotes the aggressive behavior of ovarian cancer.
View Article and Find Full Text PDFBackground: Homeobox genes encode transcription factors that control patterning of virtually all organ systems including the vasculature. Tumor angiogenesis is stimulated by several homeobox genes that are overexpressed in tumor cells, but the mechanisms of these genes are poorly understood. In this study, we investigated the mechanisms by which DLX4, a homeobox gene that is associated with increased tumor microvessel density, stimulates ovarian tumor angiogenesis.
View Article and Find Full Text PDFBackground: Epithelial ovarian cancer (EOC) is a lethal disease that frequently involves the peritoneal cavity. Dissemination of EOC is a multi-step process in which exfoliated tumor cells survive in the peritoneal fluid as multi-cellular aggregates and then form invasive implants on peritoneal surfaces. The mechanisms that control this process are poorly understood.
View Article and Find Full Text PDFEpithelial ovarian cancer is the most lethal type of gynecologic malignancy. Sixty percent of women who are diagnosed with ovarian cancer present with advanced-stage disease that involves the peritoneal cavity and these patients have a 5-year survival rate of less than 30%. For more than two decades, tumor-debulking surgery followed by platinum-taxane combination chemotherapy has remained the conventional first-line treatment of ovarian cancer.
View Article and Find Full Text PDFUnlabelled: More than 60% of patients who are diagnosed with epithelial ovarian cancer (EOC) present with extensive peritoneal carcinomatosis. EOC cells typically disseminate by shedding into the peritoneal fluid in which they survive as multicellular aggregates and then implant onto peritoneal surfaces. However, the mechanism that facilitates aggregation and implantation of EOC cells is poorly understood.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) exhibit an M2 macrophage phenotype that suppresses anti-tumor immune responses and often correlates with poor outcomes in patients with cancer. Patients with ovarian cancer frequently present with peritoneal carcinomatosis, but the mechanisms that induce naïve peritoneal macrophages into TAMs are poorly understood. In this study, we found an increased abundance of TAMs in mouse i.
View Article and Find Full Text PDFTopoisomerase II (TOP2)-targeting poisons such as anthracyclines and etoposide are commonly used for cancer chemotherapy and kill tumor cells by causing accumulation of DNA double-strand breaks (DSB). Several lines of evidence indicate that overexpression of TOP2A, the gene encoding topoisomerase IIα, increases sensitivity of tumor cells to TOP2 poisons, but it is not clear why some TOP2A-overexpressing (TOP2A-High) tumors respond poorly to these drugs. In this study, we identified that TOP2A expression is induced by DLX4, a homeoprotein that is overexpressed in breast and ovarian cancers.
View Article and Find Full Text PDFEpithelial ovarian cancers (EOCs) often exhibit morphologic features of embryonic Müllerian duct-derived tissue lineages and colonize peritoneal surfaces that overlie connective and adipose tissues. However, the mechanisms that enable EOC cells to readily adapt to the peritoneal environment are poorly understood. In this study, we show that expression of HOXA9, a Müllerian-patterning gene, is strongly associated with poor outcomes in patients with EOC and in mouse xenograft models of EOC.
View Article and Find Full Text PDFThe ovarian surface epithelium (OSE) origin of ovarian cancers has been controversial because these cancers often exhibit Müllerian-like features. One hypothesis is that ovarian neoplasia involves the gain of growth advantages by OSE cells via activation of Müllerian programs. The homeobox gene HOXA10 controls formation of the uterus from the Müllerian ducts, and is not expressed in normal OSE.
View Article and Find Full Text PDFPurpose: A critical step of protein synthesis involves the liberation of the mRNA cap-binding translation initiation factor eIF4E from 4EBP inhibitory binding proteins, and its engagement to the scaffolding protein eIF4G. eIF4E is a candidate target for cancer therapy because it is overexpressed or activated in many types of tumors and has tumorigenic properties. Our aim was to design and evaluate 4EBP-based peptides for their antitumor activity in ovarian cancer.
View Article and Find Full Text PDFBackground And Purpose: Astrocytic glutamate transporter protein, GLT-1 (EAAT2), recovers extracellular glutamate and ensures that neurons are protected from excess stimulation. Recently, beta-lactam antibiotics, like ceftriaxone (CTX), were reported to induce the upregulation of GLT-1. Here, we investigated ischemic tolerance induction by CTX in an experimental model of focal cerebral ischemia.
View Article and Find Full Text PDFBackground And Purpose: The rate of nitric oxide (NO) generation from nitrite is linearly dependent on reductions in oxygen and pH levels. Recently, nitrite-derived NO has been reported to exert a profound protection against liver and heart ischemia-reperfusion injury. In this study, we hypothesized that nitrite would be reduced to NO in the ischemic brain and exert NO-dependent neuroprotective effects.
View Article and Find Full Text PDFMouse embryonic stem (mES) cells can be maintained in undifferentiated state in the presence of a cytokine, leukemia inhibitory factor (LIF). Many investigators found that STAT3 activation is important for the maintenance of pluripotency by LIF. However, the downstream pathways of STAT3 activation are still unknown.
View Article and Find Full Text PDFHuntington's disease has an increase in the activated calpain, which is enhanced by the NMDA receptor activation. We investigated the neuroprotective effect of memantine in 3-nitropropionic acid (3NP)-induced striatal degeneration model. Either memantine (20 mg/kg/day) or PBS was intraperitoneally administered for five days with 3NP continuous infusion.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist, rosiglitazone, not only improves insulin resistance in patients with type II diabetes but also exerts a broad spectrum protective effects in variable animal models of neurologic or cardiovascular diseases. We studied the effect of rosiglitazone on angiogenesis and neurological recovery after focal cerebral ischemia. Rosiglitazone (3 mg/kg or 0.
View Article and Find Full Text PDFErythropoietin (EPO), a pleiotropic cytokine involved in erythropoiesis, is tissue-protective in ischemic, traumatic, toxic and inflammatory injuries. In this study, we investigated the effect of EPO in experimental intracerebral hemorrhage (ICH). Two hours after inducing ICH via the stereotaxic infusion of collagenase, recombinant human EPO (500 or 5000 IU/kg, ICH + EPO group) or PBS (ICH + vehicle group) was administered intraperitoneally, then once daily afterwards for 1 or 3 days.
View Article and Find Full Text PDFRecent studies have indicated the beneficial effects of vascular endothelial growth factor (VEGF), and transplanted neural stem cells (NSCs) in cerebral ischemia. We investigated the effects of the combined administration of NSCs and VEGF on focal cerebral ischemia in adult rats. Four groups (n = 12, respectively)--group 1 (ischemia-only), group 2 (ischemia + VEGF), group 3 (ischemia + NSCs) and group 4 (ischemia + NSCs + VEGF)--were compared.
View Article and Find Full Text PDF