In this study, we explored the size-dependent optoelectronic characteristics of InGaN/GaN red micro-LEDs grown on Si substrates. We successfully demonstrated the fabrication of 4-inch wafer-scale InGaN/GaN micro-LEDs, showcasing the feasibility of large-scale production. Additionally, we presented the binary pixel display with 6 µm pitch, achieving a resolution of 4232 PPI.
View Article and Find Full Text PDFIsing solvers are important for efficiently addressing non-deterministic polynomial-time (NP)-hard combinatorial optimization problems (COPs), where scalability and compactness are crucial for practical applications. In this study, an experimental demonstration of an oscillator-based Ising solver employing a highly scalable 4F InGaAs bi-stable resistor (biristor) is presented. It is first explored the oscillation behavior of the InGaAs biristor, establishing that classical Ising spins can be emulated using the sub-harmonic injection locking (SHIL) technique.
View Article and Find Full Text PDFThe coming of the big-data era brought a need for power-efficient computing that cannot be realized in the Von Neumann architecture. Neuromorphic computing which is motivated by the human brain can greatly reduce power consumption through matrix multiplication, and a device that mimics a human synapse plays an important role. However, many synaptic devices suffer from limited linearity and symmetry without using incremental step pulse programming (ISPP).
View Article and Find Full Text PDFHfO-based ferroelectric (FE) materials have emerged as a promising material for non-volatile memory applications because of remanent polarization, scalability of thickness below 10 nm, and compatibility with complementary metal-oxide-semiconductor technology. However, in the metal/FE/insulator/semiconductor, it is difficult to improve switching voltage ( ), endurance, and retention properties due to the interfacial layer (IL), which inevitably grows during the fabrication. Here, we proposed and demonstrated oxygen scavenging to reduce the IL thickness in an HfZrO -based capacitor and the thinner IL was confirmed by cross-sectional transmission electron microscopy.
View Article and Find Full Text PDF