Because of their nutritional value, zinc oxide (ZnO) nanoparticles (NPs) are applied as a dietary source of zinc, by direct addition to complex, multiple-component food matrices. The thereby occurring interactions of NPs with food matrices may have biological or toxic effects. In particular, NP interactions with food protein can lead to structural deformation of the latter, potentially changing its digestive efficiency and gastrointestinal absorption.
View Article and Find Full Text PDFZinc oxide (ZnO) nanoparticles (NPs) are widely used as a Zn supplement, because Zn plays a role in many cellular and immune functions but public concern about their potentially undesirable effects on the human body is growing. When NPs are added in food matrices, interactions between NPs and food components occur, which can affect biological systems. In this study, interactions between ZnO NPs and saccharides were investigated by measuring changes in hydrodynamic radius, zeta potential and solubility and by quantifying amounts of adsorbed saccharides on NPs; acacia honey, sugar mixtures (containing equivalent amounts of fructose, glucose, sucrose and maltose) and monosaccharide solutions were used as model compounds.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2017
Zinc oxide (ZnO) nanoparticles (NPs) have been widely used for food fortification, because zinc is essential for many enzyme and hormone activities and cellular functions, but public concern about their potential toxicity is increasing. Interactions between ZnO and biomatrices might affect the oral absorption, distribution, and toxicity of ZnO, which may be influenced by particle size. In this study, ZnO interactions with biomatrices were investigated by examining the physicochemical properties, solubility, protein fluorescence quenching, particle-protein corona, and intestinal transport with respect to the particle size (bulk vs.
View Article and Find Full Text PDFNanoparticles (NPs) have been widely utilized in the food industry as additives with their beneficial characteristics, such as improving sensory property and processing suitability, enhancing functional and nutritional values, and extending shelf-life of foods. Silica is used as an anti-caking agent to improve flow property of powered ingredients and as a carrier for flavors or active compounds in food. Along with the rapid development of nanotechnology, the sizes of silica fall into nanoscale, thereby raising concerns about the potential toxicity of nano-sized silica materials.
View Article and Find Full Text PDFIron or zinc deficiency is one of the most important nutritional disorders which causes health problem. However, food fortification with minerals often induces unacceptable organoleptic changes during preparation process and storage, has low bioavailability and solubility, and is expensive. Nanotechnology surface modification to obtain novel characteristics can be a useful tool to overcome these problems.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2016
(1) Background: Application of nanotechnology or nanomaterials in agricultural food crops has attracted increasing attention with regard to improving crop production, quality, and nutrient utilization. Gold nanoparticles (Au-NPs) have been reported to enhance seed yield, germination rate, and anti-oxidant potential in food crops, raising concerns about their toxicity potential. In this study, we evaluated the oral toxicity of red ginseng exposed to colloidal Au-NPs during cultivation (G-red ginseng) in rats and their intestinal transport mechanism.
View Article and Find Full Text PDFGold nanoparticles (Au-NPs) have promising potential for diverse biological application, but it has not been completely determined whether Au-NP has potential toxicity and . In the present study, toxicity of Au-NP was evaluated in human intestinal cells as well as in rats after 14-day repeated oral administration. Biokinetic study was also performed to assess oral absorption and tissue distribution.
View Article and Find Full Text PDF