Publications by authors named "Song-Guo Zheng"

Article Synopsis
  • - Neurotrauma in limbs causes long-lasting neuroinflammation that interferes with nerve structure and slows down nerve repair, despite some inflammatory processes being beneficial for clearing damaged tissue.
  • - Peripheral nerve injuries lead to increased expression of secreted frizzled-related protein 1 (sFRP1) by Schwann cells, which interacts with heat shock protein 90 (HSP90) in macrophages, causing excessive inflammation.
  • - Targeted deletion of sFRP1 from Schwann cells or HSP90 from macrophages can reduce neuroinflammation and hinder nerve damage progression, highlighting the harmful role of macrophage response to sFRP1 in nerve injuries.
View Article and Find Full Text PDF

T follicular helper (Tfh) cells represent an important subset of CD4+ T cells that is crucial to the maturation and differentiation of B cells and the production of high-affinity antibodies. Because B cell activating-factor (BAFF), a vital B cell survival factor, is also crucial to B cell maturation and differentiation, we assessed the effects of BAFF on Tfh cell development and function. We demonstrated that deficiency of BAFF, but not of APRIL, markedly inhibited Tfh cell development, germinal center (GC) formation, and antigen-specific antibody production.

View Article and Find Full Text PDF

Fibroblast-like synoviocytes (FLS) plays an important role in synovial inflammation and joint damage in rheumatoid arthritis (RA). As the most abundant mRNA modification, N6-methyladenosine (mA) is involved in the development of various diseases; however, its role in RA remains to be defined. In this study, we reported the elevated expression of the mA demethylase fat mass and obesity-associated protein (FTO) in FLS and synovium from RA patients.

View Article and Find Full Text PDF

Mortality rates due to lung cancer are high worldwide. Although PD-1 and PD-L1 immune checkpoint inhibitors boost the survival of patients with non-small-cell lung cancer (NSCLC), resistance often arises. The Warburg Effect, which causes lactate build-up and potential lysine-lactylation (Kla), links immune dysfunction to tumor metabolism.

View Article and Find Full Text PDF

Introduction: The immunosuppressive capacity of mesenchymal stem cells (MSCs) is dependent on the "license" of several pro-inflammatory factors to express immunosuppressive molecular profiles, which determines the therapeutic efficacy of MSCs in immune-mediated inflammatory diseases. Of those, interferon-γ (IFN-γ) is a key inducer for the expression of immunosuppressive molecular profiles; however, the mechanism underlying this effect is unknown.

Objectives: To elucidate the regulation mechanism and biological functions of N-methyladenosine (mA) modification in the immunosuppressive functions by the IFN-γ-licensing MSCs.

View Article and Find Full Text PDF

Allergic asthma is a chronic non-communicable disease characterized by lung tissue inflammation. Current treatments can alleviate the clinical symptoms to some extent, but there is still no cure. Recently, the transplantation of mesenchymal stem cells (MSCs) has emerged as a potential approach for treating allergic asthma.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have demonstrated potent immunomodulatory properties that have shown promise in the treatment of autoimmune diseases, including rheumatoid arthritis (RA). However, the inherent heterogeneity of MSCs triggered conflicting therapeutic outcomes, raising safety concerns and limiting their clinical application. This study aimed to investigate the potential of extracellular vesicles derived from human gingival mesenchymal stem cells (GMSC-EVs) as a therapeutic strategy for RA.

View Article and Find Full Text PDF

Interferon regulatory factor 4 (IRF4) is a member of IRF family of transcription factors which mainly regulates the transcription of IFN. IRF4 is restrictively expressed in immune cells such as T and B cells, macrophages, as well as DC. It is essential for the development and function of these cells.

View Article and Find Full Text PDF

Focal iron overload is frequently observed in patients with rheumatoid arthritis (RA), yet its functional significance remains elusive. Herein, we report that iron deposition in lesion aggravates arthritis by inducing macrophage ferroptosis. We show that excessive iron in synovial fluid positively correlates with RA disease severity as does lipid hyperoxidation of focal monocyte/macrophages.

View Article and Find Full Text PDF

Dysregulation of IL-17A is closely associated with airway inflammation and remodeling in severe asthma. However, the molecular mechanisms by which IL-17A is regulated remain unclear. Here we identify epithelial sirtuin 6 (SIRT6) as an epigenetic regulator that governs IL-17A pathogenicity in severe asthma.

View Article and Find Full Text PDF

IL-2 inducible T cell kinase (ITK) is critical in T helper subset differentiation and its inhibition has been suggested for the treatment of T cell-mediated inflammatory diseases. T follicular helper (Tfh), Th17 and regulatory T cells (Treg) also play important roles in the development of rheumatoid arthritis (RA), while the role of ITK in the development of RA and the intricate balance between effector T and regulatory T cells remains unclear. Here, we found that CD4 T cells from RA patients presented with an elevated ITK activation.

View Article and Find Full Text PDF

Introduction: Rheumatoid arthritis (RA) is a systemic autoimmune disease with limited treatment success, characterized by chronic inflammation and progressive cartilage and bone destruction. Accumulating evidence has shown that neutrophil extracellular traps (NETs) released by activated neutrophils are important for initiating and perpetuating synovial inflammation and thereby could be a promising therapeutic target for RA. K/B × N serum transfer-induced arthritis (STIA) is a rapidly developed joint inflammatory model that somehow mimics the inflammatory response in patients with RA.

View Article and Find Full Text PDF

Introduction: The transcription factor NFIL3 exerts comprehensive effects on the immune system. Previous studies revealed that NFIL3 is related to the function and development of different immune cell subsets. Experimental autoimmune encephalomyelitis (EAE) is mediated by immune cells which results in inflammatory demyelination in the central nervous system (CNS).

View Article and Find Full Text PDF

CD4Foxp3 regulatory T cells (Tregs) play a crucial role in preventing autoimmunity and inflammation. There are naturally-derived in the thymus (tTreg), generated extrathymically in the periphery (pTreg), and induced culture (iTreg) with different characteristics of suppressiveness, stability, and plasticity. There is an abundance of published data on neuropilin-1 (Nrp-1) as a tTreg marker, but little data exist on iTreg.

View Article and Find Full Text PDF

Retinal ischemia-reperfusion injury (IRI) is one of the main pathogenic mechanisms of glaucoma, which are largely unknown, including neuroinflammation and neuronal death in the pathological process. In our previous studies, mesenchymal stem cells (MSCs) have been reported to play anti-inflammatory and neuroprotective roles. Additionally, conditioned culture medium (CM) of MSCs stimulated by TNF-α have achieved better antiallergic effects in an experimental allergic conjunctivitis mouse model.

View Article and Find Full Text PDF

Regulatory T (Treg) cells are one of the major immunosuppressive cell types in cancer and a potential target for immunotherapy, but targeting tumor-infiltrating (TI) Treg cells has been challenging. Here, using single-cell RNA sequencing of immune cells from renal clear cell carcinoma (ccRCC) patients, we identify two distinct transcriptional fates for TI Treg cells, Fate-1 and Fate-2. The Fate-1 signature is associated with a poorer prognosis in ccRCC and several other solid cancers.

View Article and Find Full Text PDF

CD4FOXP3 Treg cells are central to the maintenance of self-tolerance and can be defective in autoimmunity. In autoimmune rheumatic diseases, dysfunctional self-tolerance, is to a large extent, caused by insufficient Treg-cell activity. Although nTregs have therapeutic effects in vivo, their relative scarcity and slow rate of in vitro expansion hinder the application of nTreg therapy.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a systemic polyarticular arthritis that primarily affects the small joints but also causes bone erosion in large joints. None of the currently existing treatment approaches is curable. In this study, the effects of human gingiva-derived mesenchymal stem cells (GMSCs) on collagen-induced arthritis (CIA) mice are examined by experimentally assessing the microstructure and mechanical behaviors of tibia.

View Article and Find Full Text PDF

Systematic characterizations of adipose regulatory T (T) cell subsets and their phenotypes remain uncommon. Using single-cell ATAC-sequencing and paired single-cell RNA and T cell receptor (TCR) sequencing to map mouse adipose T cells, we identified CD73ST2 and CD73ST2 subsets with distinct clonal expansion patterns. Analysis of TCR-sharing data implied a state transition between CD73ST2 and CD73ST2 subsets.

View Article and Find Full Text PDF

As nano-scale biological vesicles, extracellular vesicles (EVs)/exosomes, in particular, exosomes derived from mesenchymal stem cells (MSC-exosomes), have been studied in the diagnosis, prevention, and treatment of many diseases. In addition, through the combination of nanotechnology and biotechnology, exosomes have emerged as innovative tools for the development of nanomedicine. This review focuses on a profound summarization of MSC-exosomes as a powerful tool in bionanomedicine.

View Article and Find Full Text PDF

Vitamin D is one of the most important nutrients required by the human body. It is a steroid hormone that plays an important role in regulating calcium and phosphorus metabolism, and bone health. Epidemiological studies have revealed a close correlation between vitamin D and many common chronic diseases.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) play an important role in maintaining immune homeostasis and, within tumors, their upregulation is common and promotes an immunosuppressive microenvironment. Therapeutic strategies that can eliminate Tregs in the tumor (i.e.

View Article and Find Full Text PDF

Regulatory T cells (Treg) play an indispensable role in maintaining the body's immune nonresponse to self-antigens and suppressing the body's unwarranted and potentially harmful immune responses. Their absence, reduction, dysfunction, transformation, and instability can lead to numerous autoimmune diseases. There are several distinct subtypes of the Treg cells, although they share certain biological characteristics and have unique phenotypes with different regulatory functions, as well as mechanistic abilities.

View Article and Find Full Text PDF