Background: Neuronal surface antibody-associated autoimmune encephalitis (NSAE) is a group of neuro-inflammatory disorders that is mediated by autoantibodies against the cell-surface and synaptic antigens. Studies have explored the role of neurofilament light chain (NfL) in NSAE and provided inconsistent data. We performed a systematic review and meta-analysis to evaluate the NfL levels in the serum and cerebrospinal fluid (CSF) of patients with NSAE.
View Article and Find Full Text PDFBackground: The clinical phenotypes of myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) have been found to overlap with several other diseases. The new criteria proposed in 2023 were designed to better identify the disease but require validation across various populations to ascertain its clinical utility. We aimed to investigate the diagnostic performance in phenotypically diverse patients.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Various pathological mechanisms represent distinct therapeutic targets for cognitive disorders, but a balance between clearance and production is essential for maintaining the stability of the brain's internal environment. Thus, the glymphatic system may represent a common pathway by which to address cognitive disorders. Using the established model of the glymphatic system as our foundation, this review disentangles and analyzes the components of its clearance mechanism, including the initial inflow of cerebrospinal fluid, the mixing of cerebrospinal fluid with interstitial fluid, and the outflow of the mixed fluid and the clearance.
View Article and Find Full Text PDFSelf-assembling cyclic peptide nanotubes are fascinating supramolecular systems with promising potential for various applications, such as drug delivery, transmembrane ionic channels, and artificial light-harvesting systems. In this study, we present novel pH-responsive nanotubes based on asymmetric cyclic peptide-polymer conjugates. The pH response is introduced by a tertiary amine-based polymer, poly(dimethylamino ethyl methacrylate) (pDMAEMA) or poly(diethylamino ethyl methacrylate) (pDEAEMA) which is protonated at low pH.
View Article and Find Full Text PDFAqueous room-temperature phosphorescence (RTP) materials have garnered considerable attention for their significant potential across various applications such as bioimaging, sensing, and encryption. However, establishing a universally applicable method for achieving aqueous RTP remains a substantial challenge. Herein, we present a versatile supramolecular strategy to transition RTP from solid states to aqueous phases.
View Article and Find Full Text PDFSulfoxides are essential in pharmaceuticals and chemicals, yet traditional thioether oxidation struggles with selectivity and sustainability. This study introduces carbonized polymer dots (CPDs) as effective photocatalysts for ecofriendly thioether to sulfoxide oxidation, using water and ethanol to enhance reaction selectivity and efficiency under 455 nm blue light. These catalysts not only show remarkable efficacy under mild conditions but also display high selectivity for sulfoxide formation, proving versatile across a broad range of substrates.
View Article and Find Full Text PDFThe increasing incidence and mortality rates of cerebrovascular disease impose a heavy burden on both patients and society. Retinal imaging techniques, such as fundus photography, optical coherence tomography, and optical coherence tomography angiography, can be used for rapid, non-invasive evaluation of cerebral microcirculation and brain function since the retina and the central nervous system share similar embryonic origin characteristics and physiological features. This article aimed to review retinal imaging biomarkers related to cerebrovascular diseases and their applications in cerebrovascular diseases (stroke, cerebral small vessel disease [CSVD], and vascular cognitive impairment [VCI]), thus providing reference for early diagnosis and prevention of cerebrovascular diseases.
View Article and Find Full Text PDFAlzheimer's disease (AD) is recognized as the leading cause of dementia, imposing a significant economic toll on society. Despite the emergence of novel therapeutic approaches for AD, their efficacy and safety mandates further validation through rigorous clinical trials. In this context, hypertension (HTN) has garnered considerable attention as an amendable risk factor for AD.
View Article and Find Full Text PDFIntroduction: Investigating how circular RNAs (circRNAs) function during tumorigenesis may help uncover novel diagnostic markers for cancer treatment. The oncogenic role of circ_001621 has been verified in osteosarcoma, but its role in lung cancer has yet to be reported. This research is the first to investigate the circ_001621 expression and regulatory mechanism in lung cancer.
View Article and Find Full Text PDFAmyloid plaques, a major pathological hallmark of Alzheimer's disease (AD), are caused by an imbalance between the amyloidogenic and non-amyloidogenic pathways of amyloid precursor protein (APP). BACE1 cleavage of APP is the rate-limiting step for amyloid-β production and plaque formation in AD. Although the alteration of BACE1 expression in AD has been investigated, the underlying mechanisms remain unknown.
View Article and Find Full Text PDFIn the quest for sustainable and efficient synthetic methodologies within medicinal chemistry, the synthesis of carbamates and their derivatives holds a pivotal role due to their widespread application in bioactive compounds. This investigation unveils a novel methodology for the straightforward transformation of Boc-protected amines into carbamates, thiocarbamates, and ureas, utilizing -butoxide lithium as the sole base. This approach effectively obviates the necessity for hazardous reagents and metal catalysts, presenting marked enhancements compared to traditional synthetic pathways.
View Article and Find Full Text PDFArtificial light-harvesting systems (LHSs) with a multi-step sequential energy transfer mechanism significantly enhance light energy utilization. Nonetheless, most of these systems exhibit an overall energy transfer efficiency below 80%. Moreover, due to challenges in molecularly aligning multiple donor/acceptor chromophores, systems featuring ≥3-step sequential energy transfer are rarely reported.
View Article and Find Full Text PDFChem Commun (Camb)
June 2024
Pyroptosis is regarded as a promising strategy to modulate tumor immune microenvironments for anticancer therapy. Although pyroptosis inducers have been extensively explored in the biomedical field, their drug resistance, off-targeting capacity, and adverse effects do not fulfill the growing demands of therapy. Nowadays, metal-organic frameworks (MOFs) with unique structures and facile synthesis/functionalization characteristics have shown great potential in anticancer therapy.
View Article and Find Full Text PDFBackground: Previous studies have demonstrated that early intervention was the best plan to inhibit the progression of Alzheimer's disease (AD), which relied on the discovery of early diagnostic biomarkers. In this study, synaptic vesicle glycoprotein 2 A (SV2A) was examined to improve the early diagnostic efficiency in AD.
Methods: In this study, biomarker testing was performed through the single-molecule array (Simoa).
Background: Plasma amyloid-β (Aβ), phosphorylated tau-181 (p-tau181), neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) potentially aid in the diagnosis of neurodegenerative dementias. We aim to conduct a comprehensive comparison between different biomarkers and their combination, which is lacking, in a multicenter Chinese dementia cohort consisting of Alzheimer's disease (AD), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP).
Methods: We enrolled 92 demented patients [64 AD, 16 FTD, and 12 PSP with dementia] and 20 healthy controls (HC).
Fluorescent organic nanoparticles (NPs) with exceptional brightness hold significant promise for demanding fluorescence bioimaging applications. Although considerable efforts are invested in developing novel organic dyes with enhanced performance, augmenting the brightness of conventional fluorophores is still one of the biggest challenges to overcome. This study presents a supramolecular strategy for constructing ultrabright fluorescent nanoparticles in aqueous media (referred to as "Supra-fluorophores") derived from conventional fluorophores.
View Article and Find Full Text PDFHistone deacetylases (HDACs) are involved in tumorigenesis and progression, however, their role in diffuse large B-cell lymphoma (DLBCL) is not well understood. In this study, we examined the expression levels, mutations, and clinical significance of HDACs in DLBCL. Additionally, we investigated the therapeutic potential of Chidamide, a novel HDAC inhibitor, to provide scientific evidence for targeting HDACs in DLBCL patients.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD), which is the most common cause of dementia in elderly individuals, is a progressive neurodegenerative disorder. Neuroinflammation, which is an immune response that is activated by glial cells in the central nervous system, plays an important role in neurodegenerative diseases. Many studies have shown that interleukin-17A (IL-17A) plays an important role in AD, but research on the pathological effects of IL-17A on AD is limited.
View Article and Find Full Text PDFPeptide-based artificial enzymes are attracting significant interest because of their remarkable resemblance in both composition and structure to native enzymes. Herein, we report the construction of histidine-containing cyclic peptide-based supramolecular polymeric nanotubes to function as artificial enzymes for ester hydrolysis. The optimized catalyst shows a .
View Article and Find Full Text PDFFluorescent materials with high brightness play a crucial role in the advancement of various technologies such as bioimaging, photonics, and OLEDs. While significant efforts are dedicated to designing new organic dyes with improved performance, enhancing the brightness of existing dyes holds equal importance. In this study, we present a simple supramolecular strategy to develop ultrabright cyanine-based fluorescent materials by addressing long-standing challenges associated with cyanine dyes, including undesired cis-trans photoisomerization and aggregation-caused quenching.
View Article and Find Full Text PDFIntroduction: Metastatic brain tumors are a common complication of systemic cancer. They tend to have a chronic onset and are located at the gray-white junction of the cerebral hemispheres, those larger than 9.4 mm in diameter are often accompanied by substantial vasogenic edema.
View Article and Find Full Text PDF