Publications by authors named "Song Luan"

The vegetation deterioration and pollution expansion from non-ferrous metal tailings pond have been found in many countries leading to water soil erosion and human health risk. Conventional ecological remediation technologies of mine tailings such as capping were costly and elusive. This study provided an economic and effective model as an alternative by substrate amelioration and vegetation restoration.

View Article and Find Full Text PDF

Background: Access to rapid diagnosis is key to the control and management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Laboratory RT-PCR testing is the current standard of care but usually requires a centralised laboratory and significant infrastructure. We describe our diagnostic accuracy assessment of a novel, rapid point-of-care real time RT-PCR CovidNudge test, which requires no laboratory handling or sample pre-processing.

View Article and Find Full Text PDF

Chronic in-vivo neurophysiology experiments require highly miniaturized, remotely powered multi-channel neural interfaces which are currently lacking in power or flexibility post implantation. To resolve this problem we present the SenseBack system, a post-implantation reprogrammable wireless 32-channel bidirectional neural interfacing device that can enable chronic peripheral electrophysiology experiments in freely behaving small animals. The large number of channels for a peripheral neural interface, coupled with fully implantable hardware and complete software flexibility enable complex in-vivo studies where the system can adapt to evolving study needs as they arise.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have been reported to hold promise to accelerate the wound-healing process in diabetic foot ulcer (DFU) due to the multilineage differentiation potential. Hence, this study intended to explore the wound healing role of MSC-derived exosomes containing long noncoding RNA (lncRNA) H19 in DFU. lncRNA H19 was predicated to bind to microRNA-152-3p (miR-152-3p), which targeted phosphatase and tensin homolog (PTEN) deleted on chromosome ten.

View Article and Find Full Text PDF

Objective: Longitudinal observation of single unit neural activity from large numbers of cortical neurons in awake and mobile animals is often a vital step in studying neural network behaviour and towards the prospect of building effective brain-machine interfaces (BMIs). These recordings generate enormous amounts of data for transmission and storage, and typically require offline processing to tease out the behaviour of individual neurons. Our aim was to create a compact system capable of: (1) reducing the data bandwidth by circa 2 to 3 orders of magnitude (greatly improving battery lifetime and enabling low power wireless transmission in future versions); (2) producing real-time, low-latency, spike sorted data; and (3) long term untethered operation.

View Article and Find Full Text PDF

Modern microtechnology is enabling the channel count of neural recording integrated circuits to scale exponentially. However, the raw data bandwidth of these systems is increasing proportionately, presenting major challenges in terms of power consumption and data transmission (especially for wireless systems). This paper presents a system that exploits the sparse nature of neural signals to address these challenges and provides a reconfigurable low-bandwidth event-driven output.

View Article and Find Full Text PDF

Neuromodulation has wide ranging potential applications in replacing impaired neural function (prosthetics), as a novel form of medical treatment (therapy), and as a tool for investigating neurons and neural function (research). Voltage and current controlled electrical neural stimulation (ENS) are methods that have already been widely applied in both neuroscience and clinical practice for neuroprosthetics. However, there are numerous alternative methods of stimulating or inhibiting neurons.

View Article and Find Full Text PDF

Electrical neural stimulation is the technique used to modulate neural activity by inducing an instantaneous charge imbalance. This is typically achieved by injecting a constant current and controlling the stimulation time. However, constant voltage stimulation is found to be more energy-efficient although it is challenging to control the amount of charge delivered.

View Article and Find Full Text PDF