Publications by authors named "Song Hongjian"

Allylic amide moieties are commonly encountered in natural products and are privileged structures in pharmaceuticals and agrochemicals. Moreover, because allylic amide can be to converted into an array of high-value motifs, they have been widely employed in organic synthesis. However, the development of catalytic systems for intermolecular allylic amidation of olefins, particularly branched α-olefins, has proven to be challenging.

View Article and Find Full Text PDF

A silver-catalyzed cascade cyclization strategy has been developed for the synthesis of 4-aminotetrahydrocarbazole, a common core structure found in various alkaloids. This target molecule can be synthesized through a one-step tandem cyclization reaction, thereby eliminating the need for a prior synthesis of tetrahydrocarbazole. Furthermore, the use of chiral -butylsulfinamide facilitates chiral resolution of the resulting product.

View Article and Find Full Text PDF

The ubiquitous presence of the disinfectant triclosan (TCS) has raised global concerns regarding its potential threat to aquatic organisms. However, the effects of TCS on lipid metabolism in fish and its underlying mechanisms remain unclear. This study investigated the effect of environmentally relevant levels of TCS on the lipid metabolism in the cyprinid fish Squalidus argentatus.

View Article and Find Full Text PDF

Four-membered ring structure is important in organic chemistry, and selective cleavage and functionalization of these strained rings are of great interest. However, direct α-functionalization of cyclobutanols is rarely reported because of the high O-H bond dissociation energy and the occurrence of β-scission of C-C bonds in these alcohols. Recently, transition-metal catalysis has facilitated alkoxy radical generation.

View Article and Find Full Text PDF

With advances in organoboron chemistry, boron-centered functional groups have become increasingly attractive. In particular, alkylboron species are highly versatile reagents for organic synthesis, but the direct generation of alkyl radicals from commonly used, bench-stable boron species has not been thoroughly investigated. Herein, we describe a method for activating C-B bonds by nitrogen- or oxygen-radical transfer that is applicable to alkylboronic acids and esters and can be used for both Michael addition reactions and Minisci reactions to generate alkyl or arylated products.

View Article and Find Full Text PDF

Herein, we report a direct method for palladium-catalyzed coordination-induced oxidative remote C-H aryl etherification of 8-amidoquinolines with -benzoquinone monoacetal. The method provides access to C5-aryl etherified quinolines and shows site-selectivity different from that of typical palladium-catalyzed C(sp)-H activation reactions. The -benzoquinone monoacetals act both as oxidants and as aryl etherification reagents.

View Article and Find Full Text PDF

Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response.

View Article and Find Full Text PDF

A facile and eco-friendly photoinduced dehydrogenative amination of quinoxalin-2(1)-ones with aliphatic amines without any metal, strong oxidant, and photocatalyst has been established for the first time. This reaction proceeding efficiently with air as the sole oxidant at room temperature obtains a wide range of 3-aminoquinoxaline-2(1)-ones in high yields with excellent functional group tolerance. The mechanistic studies show an interesting involvement of quinoxalin-2(1)-ones as a photosensitizer, which eliminates the requirement for external photocatalysts.

View Article and Find Full Text PDF

With the development of organoboron chemistry, boron-centered radicals have become increasingly attractive. However, their synthetic applications remain limited in that they have been used only as substrates for addition reactions or as initiators for catalytic reactions. We have achieved a new reaction pathway in which tetraarylborate salts are used as precursors for aryl radicals via boron radicals, by introducing a simple activation reagent.

View Article and Find Full Text PDF

Construction of the pyridine ring is a practical and streamline way to construct a variety of quindoline derivatives. We have developed a novel method for synthesis of quindoline derivatives by means of intramolecular ring-closure reactions of 3--methylphenylindoles an iminium salt intermediate. This practical method has the advantages of a short reaction time, operational simplicity, and nearly quantitative yields; and it can be used for the rapid synthesis of a variety of valuable quindoline derivatives.

View Article and Find Full Text PDF

N-Heterocyclic carbenes (NHCs) are unique Lewis basic catalysts that mediate various organic transformations by means of polarity reversal. Although the scope of research on two-electron reactions mediated by NHC catalysts has been expanding, the types of these reactions are limited by the inability of NHCs to engage sp-electrophiles. However, the revival of photocatalysis has accelerated the development of free-radical chemistry, and combining photoredox catalysis and NHC catalysis to achieve NHC-mediated radical reactions under mild conditions could overcome the above-mentioned limitation.

View Article and Find Full Text PDF

Marine natural products have attracted more and more attention in drug research and development due to their unique structure, diverse biological activities, and novel mode of action. Using antiviral alkaloid aldisine as the lead compound and drawing on the hydrogen bond effect widely used in drug design, derivatives containing oxime and hydrazone moieties were designed and synthesized by introducing functional groups with hydrogen-bond receptors or donors into molecules. The configuration of derivatives was systematically studied through nuclear Overhauser effect (NOE) spectroscopy and single crystal analysis.

View Article and Find Full Text PDF

Compounds with acylhydrazone fragments contain amide and imine groups that can act as electron donors and acceptors, so they are easier to bind to biological targets and thus generally exhibit significant biological activity. In this work, acylhydrazone fragments were introduced to the C-14 or C-11 position of matrine, a natural alkaloid, aiming to enhance their biological activities. The result of this bioassay showed that many synthesized compounds exhibited excellent anti-virus activity against the tobacco mosaic virus (TMV).

View Article and Find Full Text PDF

Herein, we report a mild, operationally simple, multicatalytic method for the synthesis of β,γ-unsaturated ketones via allylic acylation of alkenes. Specifically, the method combines N‑heterocyclic carbene catalysis, hydrogen atom transfer catalysis, and photoredox catalysis for cross-coupling reactions between a wide range of feedstock carboxylic acids and readily available olefins to afford structurally diverse β,γ-unsaturated ketones without olefin transposition. The method could be used to install acyl groups on highly functionalized natural-product-derived compounds with no need for substrate pre-activation, and C-H functionalization proceed with excellent site selectivity.

View Article and Find Full Text PDF

Nanoscale drug carriers play a crucial role in reducing side effects of chemotherapy drugs. However, the mononuclear phagocyte system (MPS) and the drug protonation after nanoparticles (NPs) burst release still limit the drug delivery efficiency. In this work, a self-disguised Nanospy is designed to overcome this problem.

View Article and Find Full Text PDF

Despite the ubiquity of alkylboronic acids in organic synthesis, their utility as alkyl radical precursors in visible-light-induced photocatalytic reactions is limited by their high oxidation potentials. In this study, we demonstrated that an inorganophosphorus compound can modulate the oxidation potentials of alkylboronic acids so that they can act as alkyl radical precursors. We propose a mechanism based on the results of fluorescence quenching experiments, electrochemical experiments, B and P NMR spectroscopy, and other techniques.

View Article and Find Full Text PDF

Matrine derivatives were reported to have various biological activities, especially the ester, amide or sulfonamide derivatives of matrine deriving from the hydroxyl or carboxyl group at the end of the branch chain after the D ring of matrine is opened. In this work, to investigate whether moving away all functional groups from the C-11 branch chain could have an impact on the bioactivities, such as anti-tobacco mosaic virus (TMV), insecticidal and fungicidal activities, a variety of -substituted-11-butyl matrine derivatives were synthesized. The obtained bioassay result showed that most -substituted-11-butyl matrine derivatives had obviously enhanced anti-TMV activity compared with matrine, especially many compounds had good inhibitory activity close to that of commercialized virucide Ningnanmycin (inhibition rate 55.

View Article and Find Full Text PDF

Improving the utilization rate of pesticides is key to achieve a reduction and synergism, and adding appropriate surfactant to pesticide preparation is an effective way to improve pesticide utilization. Fluorinated surfactants have excellent surface activity, thermal and chemical stability, but long-chain linear perfluoroalkyl derivatives are highly toxic, obvious persistence and high bioaccumulation in the environment. Therefore, new strategies for designing fluorinated surfactants which combine excellent surface activity and environmental safety would be useful.

View Article and Find Full Text PDF

Based on the scaffolds widely used in drug design, a series of novel tryptophan derivatives containing azepine and acylhydrazone moieties have been designed, synthesized, characterized, and evaluated for their biological activities. The bioassay results showed that the target compounds possessed moderate to good antiviral activities against the tobacco mosaic virus (TMV), among which compounds , , , , , and exhibited higher inactivation, curative, and protection activities in vivo than that of ribavirin (40 ± 1, 37 ± 1, 39 ± 2% at 500 mg/L). Especially, showed comparable activities to that of ningnanmycin (57 ± 2, 55 ± 3, 58 ± 1% at 500 mg/L).

View Article and Find Full Text PDF

Botanical insecticides are the origin of all insecticidal compounds. They have been widely used to control pests in crops for a long time. Currently, the commercial production of botanical insecticides extracted from plants is limited because of insufficient raw material supply.

View Article and Find Full Text PDF

Based on the scaffolds widely used in drug design, a series of novel tryptophan derivatives containing 2,5-diketopiperazine and acyl hydrazine moieties have been designed, synthesized, characterized, and evaluated for their biological activities. The bioassay results showed that the target compounds possessed moderate to good antiviral activities against tobacco mosaic virus (TMV), among which compounds , , , , and showed higher inactivation, curative, and protection activities in vivo than that of ribavirin (39 ± 1, 37 ± 1, 39 ± 1 at 500 mg/L) and comparable to that of ningnanmycin (58 ± 1, 55 ± 1, 57 ± 1% at 500 mg/L). Thus, these compounds are a promising candidate for anti-TMV development.

View Article and Find Full Text PDF

Based on the widespread use of hydrogen bonds in drug design, a series of aldisine derivatives containing oxime, oxime ether, and hydrazone moieties were designed and synthesized, and their antiviral, larvicidal, and fungicidal activities were evaluated for the first time. The bioassay results showed that most of these derivatives were active against tobacco mosaic virus (TMV). Hydrazone derivative showed inactivation, curative, and protection activities of 52 ± 4, 49 ± 1, and 52 ± 3% at 500 mg/L, which are comparable to that of the commercial antiviral drug ningnanmycin (57 ± 3, 56 ± 2, and 59 ± 1%, respectively) at the same dose.

View Article and Find Full Text PDF

Isochroman moieties are present in a wide variety of biologically active molecules, but converting isochromans to α-substituted derivatives under mild conditions is challenging. Herein, we report a mild, convenient protocol for synthesis of α-alkoxy isochroman derivatives by means of electrochemical α-C(sp)-H/O-H cross-coupling reactions of isochromans and alcohols in the presence of benzoic acid, which facilitated the electro-oxidation process and increased the product yield. Various alcohols and isochromans, as well as other structurally similar substrates, gave moderate to high yields of the desired coupling products, and the reaction could be carried out on a gram scale.

View Article and Find Full Text PDF