Publications by authors named "Song Cunxian"

Background: A previous study developed a novel luteinizing hormone-releasing hormone (LHRH) receptor-targeted liposome. The aim of this study was to further assess the pharmacokinetics, biodistribution, and anti-tumor efficacy of LHRH receptor-targeted liposomes loaded with the anticancer drug mitoxantrone (MTO).

Methods: Plasma and tissue distribution profiles of LHRH receptor-targeted MTO-loaded liposomes (LHRH-MTO-LIPs) were quantified in healthy mice or a xenograft tumor nude mouse model of MCF-7 breast cancer, and were compared with non-targeted liposomes and a free-drug solution.

View Article and Find Full Text PDF

Complete reendothelialization followed by inhibition of smooth muscle cell (SMC) proliferation is considered as an effective therapeutic option to prevent restenosis. We have designed poly(lactide-co-glycolide)-loaded bilayered nanoparticles (NPs) with the ability to sequentially release vascular endothelial growth factor (VEGF)-encoding plasmids from the outer layer and paclitaxel (PTX) from the core to promote endothelial regeneration as well as prevent restenosis. Comparing with conventional NPs, which release VEGF plasmid and PTX simultaneously, we expect that the bilayered NPs could release the VEGF plasmid more rapidly, followed by a delayed release of PTX, resulting in an efficient VEGF gene transfection, which ideally could promote reendothelialization and inhibit excessive SMC growth.

View Article and Find Full Text PDF

Self-quenchable indocyanine green (ICG)-encapsulated micelles with folic acid (FA)-targeting specificity (FA-ICG-micelles) were developed for biologically activatable photodynamic theranostics. FA-ICG-micelles were successfully prepared using the thin-film hydration method, which allows ICG to be encapsulated with a high drug loading that induces an efficient ICG-based quenched state. FA-ICG-micelles are initially in the "OFF" state with no fluorescence signal or phototoxicity, but they become highly fluorescent and phototoxic in cellular degradative environments.

View Article and Find Full Text PDF

Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines.

View Article and Find Full Text PDF

In this study, we used cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles as antigen delivery carriers to investigate how antigen-loading methods affect antigen exposure to the immune system and evaluated the resulting antigen-specific immune responses. We formulated three classes of antigen adsorbed and/or encapsulated cationic lipid-PLGA hybrid nanoparticles; we designated antigen-adsorbed (out), antigen-encapsulated (in), and antigen-adsorbed/encapsulated (both) nanoparticles. Our results demonstrate significantly more efficient lysosomal escape and cross-presentation of antigen from dendritic cells (DCs) that were exposed to "both" and "in" nanoparticles.

View Article and Find Full Text PDF

Objective: To investgate the effects of rapamycin(RPM)and RPM-loaded poly(lactic-co-glycolic)acid(PLGA)nanoparticles(NPs)on the apoptosis of human umbilical arterial vascular smooth muscle cells(HUASMCs)in vitro and expression of bcl-2 and p27(kip1) protein.

Methods: HUASMCs were cultured in vitro and divided to RPM and RPM-PLGA-NPs groups treated at 3 different concentration by 12 and 24 hours,with M231-smooth muscle growth supplements medium and null-PLGA-NPs treated groups as controlled. The apoptosis of HUASMCs was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling staining and flow cytometry.

View Article and Find Full Text PDF

Star-shaped block copolymers based on poly(D,L-lactide-co-glycolide) (PLGA) and poly(ethylene glycol) (PEG) (st-PLGA-PEG) were synthesized with structural variation on arm numbers in order to investigate the relationship between the arm numbers of st-PLGA-PEG copolymers and their micelle properties. st-PLGA-PEG copolymers with arm numbers 3, 4 and 6 were synthesized by using different cores such as trimethylolpropane, pentaerythritol and dipentaerythritol, and were characterized by nuclear magnetic resonance and gel permeation chromatography. The critical micelle concentration decreased with increasing arm numbers in st-PLGA-PEG copolymers.

View Article and Find Full Text PDF

The purpose of this study was to develop a novel lipid-polymer hybrid drug carrier comprised of folate (FA) modified lipid-shell and polymer-core nanoparticles (FLPNPs) for sustained, controlled, and targeted delivery of paclitaxel (PTX). The core-shell NPs consist of 1) a poly(ε-caprolactone) hydrophobic core based on self-assembly of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) amphiphilic copolymers, 2) a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG2000), 3) a targeting ligand (FA) on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core.

View Article and Find Full Text PDF

Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone-releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice.

View Article and Find Full Text PDF

Background: Star-shaped polymers provide more terminal groups, and are promising for application in drug-delivery systems.

Methods: A new series of six-arm star-shaped poly(lactic-co-glycolic acid) (6-s-PLGA) was synthesized by ring-opening polymerization. The structure and properties of the 6-s-PLGA were characterized by carbon-13 nuclear magnetic resonance spectroscopy, infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry.

View Article and Find Full Text PDF

Purpose: To investigate the anchoring of plasmid DNA/anti-DNA antibody/cationic lipid tri-complex (DAC micelles) onto bisphosphonate-modified 316 L coronary stents for cardiovascular site-specific gene delivery.

Methods: Stents were first modified with polyallylamine bisphosphonate (PAA-BP), thereby enabling the retention of a PAA-BP molecular monolayer that permits the anchoring (via vector-binding molecules) of DAC micelles. DAC micelles were then chemically linked onto the PAA-BP-modified stents by using N-succinimidyl-3-(2-pyridyldithiol)-propionate (SPDP) as a crosslinker.

View Article and Find Full Text PDF

Modification of carbon nanotubes (CNTs) with carboxyl group is one of the widely used strategies to increase their water dispersibility. Various molecules can be further coupled to the surface of carboxylated CNTs for the desired applications. However, the effect of carboxylation of CNTs on their cytotoxicity is far from being completely understood.

View Article and Find Full Text PDF

Long-term clinical studies of drug-eluting stents (DES) have reported high incidence of late thrombosis. Given the growing concern over the clinical application of this technology, we have developed a stent coated with bi-layered PLGA nanoparticles (BL-PLGA NPs) containing VEGF plasmid in the outer layer and paclitaxel (PTX) in the inner core (VEGF/PTX NPs). We hypothesized that early release of VEGF gene would promote re-endothelialization, while slow release of PTX would suppress smooth muscle cell proliferation.

View Article and Find Full Text PDF

The purpose of this study was to develop polymeric nanoscale drug-delivery system (nano-DDS) for paclitaxel (PTX) from poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) (PCL-PEG-PCL, PCEC) copolymers, intended to be intravenously administered, able to improve the therapeutic efficacy of the drug and devoid of the adverse effects of Cremophor EL. Both of the PTX-loaded polymeric micelles and polymersomes were successfully prepared from PCEC copolymers. The obtained PTX-loaded micelles exhibited core-shell morphology with satisfactory size (93 nm), and were favorable for intravenous injection.

View Article and Find Full Text PDF

Development of efficacious therapeutic strategies to prevent and inhibit the occurrences of restenosis after percutaneous transluminal coronary angioplasty is critical for the treatment of cardiovascular diseases. In this study, the feasibility and efficiency of stents coated with dodecylated chitosan-plasmid DNA nanoparticles (DCDNPs) were evaluated as scaffolds for localized and prolonged delivery of reporter genes into the diseased blood vessel wall. Dodecylated chitosan-plasmid DNA complexes formed stable positive charged nanospheres with mean diameter of approximately 90-180 nm and zeta potential of +28 ± 3 mV.

View Article and Find Full Text PDF

Background: Previous work in our laboratory has demonstrated that the anti-DNA antibody-immobilized stent results in highly site-specific gene delivery in a rabbit carotid model. As a result of the similarity in the anatomy and physiology of the pig and human cardiovascular systems, the porcine coronary stent model was used in the present study to evaluate the site-specificity, efficiency and long-term therapeutic effect of this gene delivery system in pig coronary arteries.

Methods: A reporter plasmid pEGFP (pEGFP-C1) was tethered on the antibody-immobilized stents and assessed for site-specificity and efficiency in a pig coronary stent model.

View Article and Find Full Text PDF

A sterically stabilized, mitoxantrone-loaded liposome, tailored to target luteinizing hormone-releasing hormone (LHRH) receptor overexpressing cells, was developed to promote the efficiency of intracellular delivery of mitoxantrone through receptor-mediated endocytosis. Liposomes were prepared by lipid film hydration and an ultrasound dispersion process. Thiolated gonadorelin with affinity for the LHRH receptor was chemically coupled to N-[(3-maleimide-1-oxopropyl) aminopropyl polyethylene glycol-carbamyl] distearoyl-l-phosphatidyl-ethanolamine via a thioether bond and subsequently inserted into polyethylene glycol-grafted liposomes.

View Article and Find Full Text PDF

Objective: To evaluate the effects of rapamycin (RPM)-loaded poly (lactic-co- glycolic) acid (PLGA) nanoparticles (NPs) on the proliferation, distribution of cell cycle, and expression of p27 protein in human umbilical arterial vascular smooth muscle cell (HUASMC) in vitro.

Methods: The primarily culture model of HUASMC was successfully established by explant-attached method in vitro. The cells were administrated with different doses of RPM, and RPM-PLGA NPs were observed as treat groups compared with PLGA NPs and M231-SMGs medium cultured group.

View Article and Find Full Text PDF

The objective of this study was to prepare a novel mifepristone-loaded PCL/Pluronic F68 implant to achieve long-term treatment of endometriosis. PCL/Pluronic F68 compound (90/10, w/w) with viscosity average molecular weight of 65,000 was successfully synthesized. The end-capped Pluronic F68 was incorporated in PCL matrixes as molecular dispersion without forming a copolymer.

View Article and Find Full Text PDF

A paclitaxel-loaded poly (epsilon]-caprolactone)(PCL)/pluronic F68 (F68) nanoparticle formulation was prepared as an intratumoral delivery system to assess its potential for future neoadjuvant chemotherapy application in the treatment of breast cancer. Paclitaxel-loaded nanoparticles were prepared by a solvent evaporation method using the self-synthesized PCL/F68 compound. Prepared nanoparticles were spherical with a rough, porous surface.

View Article and Find Full Text PDF

Multidrug resistance (MDR) of tumor cells is a major obstacle to the success of cancer chemotherapy. Poloxamers have been used in cancer therapy to overcome MDR. The objective of this research is to test the feasibility of paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 (PCL/Poloxamer 188) nanoparticles to overcome MDR in a paclitaxel-resistant human breast cancer cell line.

View Article and Find Full Text PDF