Publications by authors named "Sonezaki S"

Synovial osteochondromatosis is a relatively rare condition of the hand. We present a rare case of a locked finger in a paediatric patient with synovial osteochondromatosis, in which a tumourous lesion was continuous with the flexor tendon and trapped proximal to the A1 pulley. After resection of the tumour and synovium, no recurrence was observed over a 6-month follow-up period.

View Article and Find Full Text PDF

Background: The carpal tunnel syndrome instrument (CTSI) is the most widely used patient-reported outcome measure (PROM) in carpal tunnel syndrome (CTS). However, CTSI is an ordinal-type questionnaire and might have caused misinterpretations of the PROM between surgical outcomes of CTS (Camitz and extra/open carpal tunnel release).

Purpose: This study aims to convert the CTSI to an interval scale using Rasch analysis (RA) and evaluate the outcome differences between the original and transformed scales.

View Article and Find Full Text PDF

Purpose: The modified Camitz procedure has been used to improve thumb opposition in patients with severe carpal tunnel syndrome (CTS), although its indications remain controversial. This study compared the functional recovery of thumb opposition following carpal tunnel release with and without a concomitant Camitz procedure. We used the Carpal Tunnel Syndrome Instrument questionnaire (CTSI) and the compound muscle action potential of the abductor pollicis brevis (APB-CMAP) to assess the recovery.

View Article and Find Full Text PDF

Replantation of fingertip amputations restores the original tissue and is the ideal treatment to provide the best aesthetic and functional outcome. However, successful fingertip replantation is considered challenging because it requires supermicrosurgery techniques. This article provides a detailed surgical technique for fingertip replantation and the authors' preferences and recommendations.

View Article and Find Full Text PDF

Purpose: An accurate diagnosis of the site and severity of a brachial plexus injury is imperative for selecting the appropriate management. Conventional magnetic resonance imaging (MRI) does not allow for the precise interpretation of preganglionic injuries (pre-GIs), especially intravertebral canal injuries. We developed 4 MRI sequences of conventional 1.

View Article and Find Full Text PDF

Stabilization for displaced dorsoulnar fragments in distal radius fractures is challenging to treat with conventional volar locking plates alone. The integrated compression screw combined with a volar locking plate has been introduced as an additional tool to stabilize the dorsoulnar fragment and has been reported to work effectively. However, the compression screw is unable to stabilize a comminuted dorsal ulnar fragment; therefore, it is necessary to consider using an additional dorsal plate.

View Article and Find Full Text PDF

We report a case of a missed wooden foreign body in the metacarpophalangeal (MP) joint of the right little finger following a workplace injury. The patient presented to our institution with a persisted pain and limited range of motion of the MP joint 1 week following the injury. Plain radiographs detected no foreign body or fractures.

View Article and Find Full Text PDF

Nanotechnology is becoming increasingly important for products used in our daily lives, such as the masses of titanium dioxide nanoparticle agglomerates (TiO(2) NPs) used in the pharmaceutical industry, for cosmetic products, or for pigments. Meanwhile, a serious lack of detailed information concerning the interaction between the nanomaterials and cells limits their biological and medical applications. Sensing technology is very important for understanding these interactions.

View Article and Find Full Text PDF

Nanoparticles (NPs) are tiny materials used in a wide range of industrial and medical applications. Titanium dioxide (TiO(2)) is a type of nanoparticle that is widely used in paints, pigments, and cosmetics; however, little is known about the impact of TiO(2) on human health and the environment. Therefore, considerable research has focused on characterizing the potential toxicity of nanoparticles such as TiO(2) and on understanding the mechanism of TiO(2) NP-induced nanotoxicity through the evaluation of biomarkers.

View Article and Find Full Text PDF

The increasing use of nanomaterials in consumer and industrial products has aroused concerns regarding their fate in biological systems. An effective detection method to evaluate the safety of bio-nanomaterials is therefore very important. Titanium dioxide (TiO(2)), which is manufactured worldwide in large quantities for use in a wide range of applications, including pigment and cosmetic manufacturing, was once thought to be an inert material, but recently, more and more studies have indicated that TiO(2) nanoparticles (TiO(2) NPs) can cause inflammation and be harmful to humans by causing lung and brain problems.

View Article and Find Full Text PDF

Sonodynamic therapy is expected to be a novel therapeutic strategy for malignant gliomas. The titanium dioxide (TiO(2)) nanoparticle, a photosensitizer, can be activated by ultrasound. In this study, by using water-dispersed TiO(2) nanoparticles, an in vitro comparison was made between the photodynamic and sonodynamic damages on U251 human glioblastoma cell lines.

View Article and Find Full Text PDF

Titanium dioxide (titania) nanoparticle aggregation is an important factor in understanding cytotoxicity. However, the effect of the aggregate size of nanoparticles on cells is unclear. We prepared two sizes of titania aggregate particles and investigated their biological activity by analyzing biomarker expression based on mRNA expression analysis.

View Article and Find Full Text PDF

Titanium dioxide (TiO(2)) is thought to be a photocatalytic agent excited by UV light. Our aim was to investigate the photocatalytic antitumor effect of water-dispersed TiO(2) nanoparticles on C6 rat glioma cells and to evaluate the treatment responses by the spheroid models. Water-dispersed TiO(2) nanoparticles were constructed by the adsorption of chemical modified polyethylene glycol (PEG) on the TiO(2) surface (TiO(2)/PEG).

View Article and Find Full Text PDF

Escherichia coli DNA-unwinding protein RecQ has roles in the regulation of general recombination and the processing of stalled replication forks. In this study, we found that knockout of the recQ gene in combination with xonA xseA recJ mutations, which inhibit methyl-directed mismatch repair (MMR), caused about 100-fold increase in sensitivity to a purine analog 2-aminopurine (2AP). Intriguingly, inactivation of a MMR initiator due to the either mutation mutS or uvrD completely suppressed the 2AP sensitivity caused by recQ xonA xseA recJ mutations, suggesting that RecQ helicase might act on the DNA structures that are generated by the processing of DNA by the MutSLH complex and UvrD helicase.

View Article and Find Full Text PDF

Titanium dioxide (TiO2)/polyacrylic acid (PAA) (TiO2/PAA) particles were formed by mixing PAA and an acidic solution of TiO2 nanoparticles in dimethylformamide (DMF) followed by heat treatment. TEM and particle analysis showed that the resulting particles had a narrow size distribution. The colloid was very stable and aggregation was not observed over a wide pH range (3-9) or at high salt concentration.

View Article and Find Full Text PDF

Polyelectrolyte polyacrylic acid (PAA), used in the chemical modification of titanium dioxide (TiO(2)) nanoparticles, allows TiO(2) nanoparticles to remain in suspension at neutral pH. The anti-17beta-estradiol (E2) antibody was immobilized on PAA-modified TiO(2) (PAA-TiO(2)) nanoparticles via covalent bonding between the carboxylic acid of PAA and the amino group of the antibody. The anti-E2-antibody-immobilized TiO(2) (E2Ab-PAA-TiO(2)) nanoparticles can form a suspension at neutral pH, with a particle size of less than 100 nm.

View Article and Find Full Text PDF

To obtain a cell line that maintains stability of gene expression is important for industrial production of therapeutic proteins from recombinant cells. In this study, we attempted to improve the stability of expression of an exogenous gene by using the gene-targeting method in cultured cells. In our gene-targeting system, the green fluorescent protein (GFP) gene was used as an exogenous reporter gene targeted to the locus of the endogenous hypoxanthine phosphoribosyl transferase (HPRT) gene, which is constitutively expressed.

View Article and Find Full Text PDF

Molecular chaperone DnaK of halophilic Tetragenococcus halophilus JCM5888 was characterized under salinity conditions both in vitro and in vivo. The dnaK gene was cloned into an expression vector and transformed into Escherichia coli. The DnaK protein obtained from the recombinant E.

View Article and Find Full Text PDF

We have cloned and characterized the dnaK operon of Tetragenococcus halophila JCM5888. Nucleotide sequence analysis of cloned fragments showed that the dnaK operon consists of four open reading frames with the organization hrcA-grpE-dnaK-dnaJ. Two regulatory CIRCE (Controlling Inverted Repeat of Chaperone Expression) elements were identified in the region up-stream of hrcA.

View Article and Find Full Text PDF

The SulA protein is a cell division inhibitor in Escherichia coli, and is specifically degraded by Lon protease. To study the recognition site of SulA for Lon, we prepared a mutant SulA protein lacking the C-terminal 8 amino acid residues (SA8). This deletion protein was accumulated and stabilized more than native SulA in lon(+) cells in vivo.

View Article and Find Full Text PDF

To develop a stable immuno-assay system for quantification of human hemoglobin (Hb), the interaction between various antibodies and Hb was studied using a surface plasmon resonance (SPR) biosensor in the BIAcore equipment (Amersham Pharmacia Biotech) with an immobilized anti-Hb antibody sensor chip. When polyclonal antibodies were used, the immuno-reactivity of purified and commercially available Hb decreased drastically with incubation times up to 14 h. This instability of immuno-reactivity of Hb is attributable to the conformational changes in Hb induced by oxidation.

View Article and Find Full Text PDF

DnaJ is a molecular chaperone, which contains a zinc finger-like motif and cooperates with DnaK to mediate the folding of newly synthesized and denatured proteins. DnaJ was overproduced and purified using the maltose binding protein (MBP) fusion vector. The fusion protein (MBP-DnaJ) was expressed in a soluble form in Escherichia coli and purified to homogeneity using amylose resin in a single step.

View Article and Find Full Text PDF

Interaction between the fusion protein MBP-Lon, formed by maltose-binding protein and Lon protease, and the plasmid pBR322 was studied to clarify the DNA-binding behavior of the Lon protease. Since the MBP-Lon fusion protein that was bound to the plasmid was strongly adsorbed by amylose resin, complex formation and dissociation were determined by quantifying the unadsorbed plasmid using agarose gel electrophoresis. The autolysis of MBP-Lon fusion protein was suppressed when the protein was bound to the plasmid.

View Article and Find Full Text PDF

To overproduce extremely unstable SulA protein, which is the cell-division inhibitor of Escherichia coli, we fused the sulA gene to the maltose-binding protein (MBP) fusion vectors with or without the signal sequence (plasmids pMAL-p-SulA and pMAL-c-SulA respectively). The amount of the full-length fusion protein expressed from the plasmid pMAL-p-SulA (pre-MBP-SulA) in E. coli was much larger than that expressed from the plasmid pMAL-c-SulA (MBP-SulA).

View Article and Find Full Text PDF

Lon protease, which plays a major role in degradation of abnormal proteins in Escherichia coli, was overproduced and efficiently purified using the maltose-binding protein (MBP) fusion vector. The MBP-Lon fusion protein was expressed in a soluble form in E. coli and purified to homogeneity by amylose resin in a single step.

View Article and Find Full Text PDF