Disentangling empirically the many processes affecting spatial population synchrony is a challenge in population ecology. Two processes that could have major effects on the spatial synchrony of wild population dynamics are density dependence and variation in environmental conditions like temperature. Understanding these effects is crucial for predicting the effects of climate change on local and regional population dynamics.
View Article and Find Full Text PDFThe degree of spatial autocorrelation in population fluctuations increases with dispersal and geographical covariation in the environment, and decreases with strength of density dependence. Because the effects of these processes can vary throughout an individual's lifespan, we studied how spatial autocorrelation in abundance changed with age in three marine fish species in the Barents Sea. We found large interspecific differences in age-dependent patterns of spatial autocorrelation in density.
View Article and Find Full Text PDFThe synchrony of population dynamics in space has important implications for ecological processes, for example affecting the spread of diseases, spatial distributions and risk of extinction. Here, we studied the relationship between spatial scaling in population dynamics and species position along the slow-fast continuum of life history variation. Specifically, we explored how generation time, growth rate and mortality rate predicted the spatial scaling of abundance and yearly changes in abundance of eight marine fish species.
View Article and Find Full Text PDFWe examined whether differences in life-history characteristics can explain interspecific variation in stochastic population dynamics in nine marine fish species living in the Barents Sea system. After observation errors in population estimates were accounted for, temporal variability in natural mortality rate, annual recruitment, and population growth rate was negatively related to generation time. Mean natural mortality rate, annual recruitment, and population growth rate were lower in long-lived species than in short-lived species.
View Article and Find Full Text PDF