Publications by authors named "Sondes Bauer"

The hexagonal ferrite h-YbFeO grown on YSZ(111) by pulsed laser deposition is foreseen as a promising single multiferroic candidate where ferroelectricity and antiferromagnetism coexist for future applications at low temperatures. We studied in detail the microstructure as well as the temperature dependence of the magnetic properties of the devices by comparing the heterostructures grown directly on YSZ(111) (i.e.

View Article and Find Full Text PDF

The morphology and crystal structure of Pt films grown by pulsed laser deposition (PLD) on yttria-stabilized zirconia (YSZ)at high temperatures = 900 °C was studied for four different film thicknesses varying between 10 and 70 nm. During the subsequent growth of the capping layer, the thermal stability of the Pt was strongly influenced by the Pt film's thickness. Furthermore, these later affected the film morphology, the crystal structure and hillocks size, and distribution during subsequent growth at = 900 °C for a long duration.

View Article and Find Full Text PDF

The structure and the chemical composition of individual layers as well as of interfaces belonging to the two heterostructures M1 (BaFeO/YbFeO/YSZ) and M2 (YbFeO/BaFeO/YSZ) grown by pulsed laser deposition on yttria-stabilized zirconia (YSZ) substrates are deeply characterized by using a combination of methods such as high-resolution X-ray diffraction, transmission electron microscopy (TEM), and atomic-resolution scanning TEM with energy-dispersive X-ray spectroscopy. The temperature-dependent magnetic properties demonstrate two distinct heterostructures with different coercivity, anisotropy fields, and first anisotropy constants, which are related to the defect concentrations within the individual layers and to the degree of intermixing at the interface. The heterostructure with the stacking order BaFeO/YbFeO, i.

View Article and Find Full Text PDF

We have studied the effect of platinum underlayer for two deposited thicknesses on the microstructure, crystalline quality, morphology, chemical composition, and magnetic properties as well as magnetic domain formation of BaFeO (BaM) grown on YSZ(111) by pulsed laser deposition (PLD). We found that PLD platinum deposited with a thickness of 25 nm cannot withstand the dewetting phenomenon occurring during the subsequent BaM layer growth. A smooth and continuous Pt underlayer that possesses a sharp interface and omits the intermixing between the BaM and substrate was successfully achieved for a deposited Pt film thickness of 75 nm.

View Article and Find Full Text PDF

Atomistic processes during pulsed-laser deposition (PLD) growth influence the physical properties of the resulting films. We investigated the PLD of epitaxial layers of hexagonal LuFeO[Formula: see text] by measuring the X-ray diffraction intensity in the quasiforbidden reflection 0003 in situ during deposition. From measured X-ray diffraction intensities we determined coverages of each layer and studied their time evolution which is described by scaling exponent [Formula: see text] directly connected to the surface roughness.

View Article and Find Full Text PDF

Optimizing and monitoring the growth conditions of Pt films, often used as bottom electrodes in multiferroic material systems, represents a highly relevant issue that is of importance for controlling the crystalline quality and performance of ferroelectric oxides such as, e.g. LuFeO.

View Article and Find Full Text PDF

Structural quality of LuFeO 3 epitaxial layers grown by pulsed-laser deposition on sapphire substrates with and without platinum Pt interlayers has been investigated by in situ high-resolution X-ray diffraction (reciprocal-space mapping). The parameters of the structure such as size and misorientation of mosaic blocks have been determined as functions of the thickness of LuFeO 3 during growth and for different thicknesses of platinum interlayers up to 40 nm. By means of fitting of the time-resolved X-ray reflectivity curves and by in situ X-ray diffraction measurement, we demonstrate that the LuFeO 3 growth rate as well as the out-of-plane lattice parameter are almost independent from Pt interlayer thickness, while the in-plane LuFeO 3 lattice parameter decreases.

View Article and Find Full Text PDF

InAs P nanowires are promising building blocks for future optoelectronic devices and nanoelectronics. Their structure may vary from nanowire to nanowire, which may influence their average optoelectronic properties. Therefore, it is highly important for their applications to know the average properties of an ensemble of the nanowires.

View Article and Find Full Text PDF

We report about an in situ study of crystalline structural changes during thermal treatment of a BaSrTiO (BSTO) film grown on MgO. The study covers the complete cycle of heating, annealing and cooling and reveals simultaneous phenomena of phase transitions and strain evolution, which have been characterized by in situ 2D reciprocal space mapping (2D-RSM) using high-resolution synchrotron x-ray diffraction in coplanar and grazing incidence geometries. In this way, temperature induced phase transformation from the BSTO2 to the BSTO1 phase has been monitored and the appearance of a further crystalline phase was detected.

View Article and Find Full Text PDF

Magnetic nanocrystals with a narrow size distribution hold promise for many applications in different areas ranging from biomedicine to electronics and energy storage. Herein, the microwave-assisted sol-gel synthesis and thorough characterization of size-monodisperse zinc ferrite nanoparticles of spherical shape is reported. X-ray diffraction, Fe Mössbauer spectroscopy and X-ray photoelectron spectroscopy all show that the material is both chemically and phase-pure and adopts a partially inverted spinel structure with Fe ions residing on tetrahedral and octahedral sites according to (ZnFe)[ZnFe]O.

View Article and Find Full Text PDF

LiNi0.5Mn1.5O4 spinel cathode was studied during the first discharge cycle using combined full field Transmission X-ray Microscopy (TXM) and X-ray Absorption Near Edge Structure Spectroscopy (XANES) techniques to follow the chemical phase transformation as well as the microstructural evolution of cathode materials upon operation within an electrochemical cell.

View Article and Find Full Text PDF

In III-V nanowires the energetic barriers for nucleation in the zinc blende or wurtzite arrangement are typically of a similar order of magnitude. As a result, both arrangements can occur in a single wire. Here, we investigate the evolution of this polytypism in self-catalyzed GaAs nanowires on Si(111) grown by molecular beam epitaxy with time-resolved in situ x-ray diffraction.

View Article and Find Full Text PDF

A highly sophisticated pulsed laser deposition (PLD) chamber has recently been installed at the NANO beamline at the synchrotron facility ANKA (Karlsruhe, Germany), which allows for comprehensive studies on the PLD growth process of dielectric, ferroelectric and ferromagnetic thin films in epitaxial oxide heterostructures or even multilayer systems by combining in situ reflective high-energy diffraction with the in situ synchrotron high-resolution X-ray diffraction and surface diffraction methods. The modularity of the in situ PLD chamber offers the opportunity to explore the microstructure of the grown thin films as a function of the substrate temperature, gas pressure, laser fluence and target-substrate separation distance. Ba0.

View Article and Find Full Text PDF