Publications by authors named "Sonders M"

The serotonergic transmitter system plays fundamental roles in the nervous system in neurotransmission, synaptic plasticity, pathological processes, and therapeutic effects of antidepressants and psychedelics, as well as in the gastrointestinal and circulatory systems. We introduce a novel small molecule fluorescent agent, termed , that specifically labels serotonergic neuronal cell bodies, dendrites, and axonal projections as a serotonin transporter (SERT) fluorescent substrate. SERTlight was developed by an iterative molecular design process, based on an aminoethyl-quinolone system, to integrate structural elements that impart SERT substrate activity, sufficient fluorescent brightness, and a broad absence of pharmacological activity, including at serotonin (5-hydroxytryptamine, 5HT) receptors, other G protein-coupled receptors (GPCRs), ion channels, and monoamine transporters.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease involves the loss of dopamine neurons in a specific brain area called the substantia nigra pars compacta (SNc), with some neurons being more vulnerable than others.
  • Researchers investigated the role of the vesicular glutamate transporter VGLUT2, finding that overexpressing VGLUT2 in dopamine neurons in fruit flies and mice led to neuron loss and Parkinsonian symptoms.
  • The study concluded that VGLUT2 expression levels are crucial for the survival of dopamine neurons, suggesting that targeting this process could lead to new treatments for Parkinson's disease.
View Article and Find Full Text PDF

The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo.

View Article and Find Full Text PDF

Neurotransmission at dopaminergic synapses has been studied with techniques that provide high temporal resolution, but cannot resolve individual synapses. To elucidate the spatial dynamics and heterogeneity of individual dopamine boutons, we developed fluorescent false neurotransmitter 200 (FFN200), a vesicular monoamine transporter 2 (VMAT2) substrate that selectively traces monoamine exocytosis in both neuronal cell culture and brain tissue. By monitoring electrically evoked Ca(2+) transients with GCaMP3 and FFN200 release simultaneously, we found that only a small fraction of dopamine boutons that exhibited Ca(2+) influx engaged in exocytosis, a result confirmed with activity-dependent loading of the endocytic probe FM1-43.

View Article and Find Full Text PDF

Amphetamines elevate extracellular dopamine, but the underlying mechanisms remain uncertain. Here we show in rodents that acute pharmacological inhibition of the vesicular monoamine transporter (VMAT) blocks amphetamine-induced locomotion and self-administration without impacting cocaine-induced behaviours. To study VMAT's role in mediating amphetamine action in dopamine neurons, we have used novel genetic, pharmacological and optical approaches in Drosophila melanogaster.

View Article and Find Full Text PDF

Degeneration of dopamine (DA) neurons in Parkinson's disease (PD) causes hypokinesia, but DA replacement therapy can elicit exaggerated voluntary and involuntary behaviors that have been attributed to enhanced DA receptor sensitivity in striatal projection neurons. Here we reveal that in hemiparkinsonian mice, striatal D1 receptor-expressing medium spiny neurons (MSNs) directly projecting to the substantia nigra reticulata (SNr) lose tonic presynaptic inhibition by GABAB receptors. The absence of presynaptic GABAB response potentiates evoked GABA release from MSN efferents to the SNr and drives motor sensitization.

View Article and Find Full Text PDF

Developmental alterations of excitatory synapses are implicated in autism spectrum disorders (ASDs). Here, we report increased dendritic spine density with reduced developmental spine pruning in layer V pyramidal neurons in postmortem ASD temporal lobe. These spine deficits correlate with hyperactivated mTOR and impaired autophagy.

View Article and Find Full Text PDF

Vesicular monoamine transporter 2 (VMAT2) is an essential component of the monoaminergic neurotransmission system in the brain as it transports monoamine neurotransmitters from the neuronal cytosol into the synaptic vesicles and thus contributes to modulation of neurotransmitter release. Considering the continuing interest in VMAT2 as a drug target, as well as a target for the design of imaging probes, we have developed a fluorescent substrate well suited for the study of VMAT2 in cell culture. Herein, we report the synthesis and characterization of a new fluorescent probe, FFN206, as an excellent VMAT2 substrate capable of detecting VMAT2 activity in intact cells using fluorescence microscopy, with subcellular localization to VMAT2-expressing acidic compartments without apparent labeling of other organelles.

View Article and Find Full Text PDF

We recently introduced fluorescent false neurotransmitters (FFNs) as optical tracers that enable the visualization of neurotransmitter release at individual presynaptic terminals. Here, we describe a pH-responsive FFN probe, FFN102, which as a polar dopamine transporter substrate selectively labels dopamine cell bodies and dendrites in ventral midbrain and dopaminergic synaptic terminals in dorsal striatum. FFN102 exhibits greater fluorescence emission in neutral than acidic environments, and thus affords a means to optically measure evoked release of synaptic vesicle content into the extracellular space.

View Article and Find Full Text PDF

The serotonin transporter (SERT) is the principal mechanism for terminating serotonin (5-HT) signals in the nervous system and is a site of action for a variety of psychoactive drugs including antidepressants, amphetamines, and cocaine. Here we show that human SERTs (hSERTs) and rat SERTs are capable of robust dopamine (DA) uptake through a process that differs mechanistically from 5-HT transport in several unanticipated ways. DA transport by hSERT has a higher maximum velocity than 5-HT transport, requires significantly higher Na(+) and Cl(-) concentrations to sustain transport, is inhibited noncompetitively by 5-HT, and is more sensitive to SERT inhibitors, including selective serotonin reuptake inhibitors.

View Article and Find Full Text PDF

The human blood fluke Schistosoma mansoni is the primary cause of schistosomiasis, a debilitating disease that affects 200 million individuals in over 70 countries. The biogenic amine serotonin is essential for the survival of the parasite and serotonergic proteins are potential novel drug targets for treating schistosomiasis. Here we characterize two novel serotonin transporter gene transcripts, SmSERT-A and SmSERT-B, from S.

View Article and Find Full Text PDF

The synthetic amines methamphetamine (METH), amphetamine (AMPH), and their metabolite para-hydroxyamphetamine (POHA) are chemically and structurally related to the catecholamine neurotransmitters and a small group of endogenous biogenic amines collectively referred to as the trace amines (TAs). Recently, it was reported that METH, AMPH, POHA, and the TAs para-tyramine (TYR) and beta-phenylethylamine (PEA) stimulate cAMP production in human embryonic kidney (HEK)-293 cells expressing rat trace amine-associated receptor 1 (rTAAR1). The discovery that METH and AMPH activate the rTAAR1 motivated us to study the effect of these drugs on the mouse TAAR1 (mTAAR1) and a human-rat chimera (hrChTAAR1).

View Article and Find Full Text PDF

Amphetamine and substituted amphetamines, including methamphetamine, methylphenidate (Ritalin), methylenedioxymethamphetamine (ecstasy), and the herbs khat and ephedra, encompass the only widely administered class of drugs that predominantly release neurotransmitter, in this case principally catecholamines, by a non-exocytic mechanism. These drugs play important medicinal and social roles in many cultures, exert profound effects on mental function and behavior, and can produce neurodegeneration and addiction. Numerous questions remain regarding the unusual molecular mechanisms by which these compounds induce catecholamine release.

View Article and Find Full Text PDF

Plasma membrane neurotransmitter transporters for monoamines, GABA, glycine and excitatory amino acids are homologous to two sizable families of bacterial amino acid transporters. Recently, a high resolution structure was determined for a thermophilic glutamate transporter. Also, a bacterial tryptophan transporter related to the family of biogenic amine neurotransmitter transporters was functionally expressed.

View Article and Find Full Text PDF

Cocaine initiates its euphoric effects by binding to the dopamine transporter (DAT), blocking uptake of synaptic dopamine. It has been hypothesized that the DAT transmembrane aspartic acid residue D79 forms an ionic interaction with charged nitrogen atoms in both dopamine and cocaine. We examined the consequences of novel and previously studied mutations of the D79 residue on DAT uptake of [3H]dopamine, DAT binding of the cocaine analog [3H]WIN 35,428, and drug inhibition of each process, all under identical conditions.

View Article and Find Full Text PDF

The trace amine para-tyramine is structurally and functionally related to the amphetamines and the biogenic amine neurotransmitters. It is currently thought that the biological activities elicited by trace amines such as p-tyramine and the psychostimulant amphetamines are manifestations of their ability to inhibit the clearance of extracellular transmitter and/or stimulate the efflux of transmitter from intracellular stores. Here we report the discovery and pharmacological characterization of a rat G protein-coupled receptor that stimulates the production of cAMP when exposed to the trace amines p-tyramine, beta-phenethylamine, tryptamine, and octopamine.

View Article and Find Full Text PDF

Extracellular concentrations of monoamine neurotransmitters are regulated by a family of high-affinity transporters that are the molecular targets for such psychoactive drugs as cocaine, amphetamines, and therapeutic antidepressants. In Drosophila melanogaster, cocaine-induced behaviors show striking similarities to those induced in vertebrate animal models. Although a cocaine-sensitive serotonin carrier exists in flies, there has been no pharmacological or molecular evidence to support the presence of distinct carrier subtypes for other bioactive monoamines.

View Article and Find Full Text PDF

Background: Reboxetine is a potent antidepressant, with efficacy comparable to that of imipramine, desipramine, and fluoxetine, and has improved side-effect profile. The basis of its efficacy and improved tolerability is sought through studies of reboxetine in a number of pharmacological models of depression.

Methods: Pharmacological selectivity for uptake systems was defined by uptake and binding assays for the three monoamine uptake sites.

View Article and Find Full Text PDF

Arachidonic acid modulates both electrical and biochemical properties of membrane proteins involved in cellular signaling. In Xenopus laevis oocytes expressing the excitatory amino acid transporter EAAT4, physiologically relevant concentrations of arachidonic acid increase the amplitude of the substrate-activated current by roughly twofold at -60 mV. This stimulation is not attributable to the modulation of either substrate/ion cotransport or the ligand-gated chloride current, the major conductance associated with this carrier.

View Article and Find Full Text PDF

The neurotransmitter dopamine lies at or near the center of current theories of drug abuse and dependence. Multiple lines of evidence indicate that dopaminergic cells play key roles in a variety of motivated behaviors. Accordingly, it is not surprising that cocaine and amphetamines--some of the most widely used illicit drugs--elevate extraneuronal dopamine concentrations through their actions on the plasma membrane dopamine transporter.

View Article and Find Full Text PDF

Recently, we cloned the human cation transporter hOCT2, a member of a new family of polyspecific transporters from kidney, and demonstrated electrogenic uptake of tetraethylammonium, choline, N1-methylnicotinamide, and 1-methyl-4-phenylpyridinium. Using polymerase chain reaction amplification, cDNA sequencing, in situ hybridization, and immunohistochemistry, we now show that hOCT2 message and protein are expressed in neurons of the cerebral cortex and in various subcortical nuclei. In Xenopus laevis oocytes expressing hOCT2, electrogenic transport of norepinephrine, histamine, dopamine, serotonin, and the antiparkinsonian drugs memantine and amantadine was demonstrated by tracer influx, tracer efflux, electrical measurements, or a combination.

View Article and Find Full Text PDF

Activation of protein kinase C (PKC) regulates the activity of a number of neurotransmitter transporters. When Xenopus oocytes expressing the cloned human dopamine transporter (hDAT) were pretreated with bath-applied phorbol 12-myristate 13-acetate (PMA), a PKC activator, [3H]DA uptake decreased irreversibly in a time- and dose-dependent manner (IC50 = 22 nM; maximal inhibition = 63-85%). The inhibition appeared to be PKC-specific because incubation with the inactive form of phorbol ester 4alpha-phorbol-12,13-didecanoate (400 nM) did not change the uptake activity and PMA (100 nM) inhibition could be partially blocked by the selective PKC inhibitor bisindolylmaleimide I (1 microM).

View Article and Find Full Text PDF

Electrophysiological and pharmacological studies of a cloned human dopamine transporter (hDAT) were undertaken to investigate the mechanisms of transporter function and the actions of drugs at this target. Using two-electrode voltage-clamp techniques with hDAT-expressing Xenopus laevis oocytes, we show that hDAT can be considered electrogenic by two criteria. (1) Uptake of hDAT substrates gives rise to a pharmacologically appropriate "transport-associated" current.

View Article and Find Full Text PDF
Channels in transporters.

Curr Opin Neurobiol

June 1996

Recent electrophysiological investigations of plasma membrane neurotransmitter transporters have shown that carriers can function in ways similar to ion channels. The results of these studies reveal underlying mechanisms not encompassed by classic carrier models and support an emerging view that transporter-mediated ionic currents may contribute to signaling in the nervous system.

View Article and Find Full Text PDF