Publications by authors named "Sonam Popli"

T-cell immunoglobulin and mucin (TIM) family proteins facilitate the clearance of apoptotic cells, are involved in immune regulation, and promote infection of enveloped viruses. These processes are frequently studied in experimental animals, such as mice or rhesus macaques, but functional differences among the TIM orthologs from these species have not been described. Previously, we reported that while all three human TIM proteins bind phosphatidylserine (PS), only human TIM1 (hTIM1) binds phosphatidylethanolamine (PE), and that this PE-binding ability contributes to both phagocytic clearance of apoptotic cells and viral infection.

View Article and Find Full Text PDF

T-cell Immunoglobulin and Mucin (TIM)-family proteins facilitate the clearance of apoptotic cells, are involved in immune regulation, and promote infection of enveloped viruses. These processes are frequently studied in experimental animals such as mice or rhesus macaques, but functional differences among the TIM orthologs from these species have not been described. Previously, we reported that while all three human TIM proteins bind phosphatidylserine (PS), only human TIM1 (hTIM1) binds phosphatidylethanolamine (PE), and that this PE-binding ability contributes to both phagocytic clearance of apoptotic cells and virus infection.

View Article and Find Full Text PDF

Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity.

View Article and Find Full Text PDF

Virus infection triggers induction of interferon (IFN)-stimulated genes (ISGs), which ironically inhibit viruses themselves. We identified Tudor domain-containing 7 (TDRD7) as a novel antiviral ISG, which inhibits viral replication by interfering with autophagy pathway. Here, we present a molecular basis for autophagy inhibitory function of TDRD7.

View Article and Find Full Text PDF

Interferon (IFN) regulatory factor 3 (IRF3) is a transcription factor activated by phosphorylation in the cytoplasm of a virus-infected cell; by translocating to the nucleus, it induces transcription of IFN-β and other antiviral genes. We have previously reported IRF3 can also be activated, as a proapoptotic factor, by its linear polyubiquitination mediated by the RIG-I pathway. Both transcriptional and apoptotic functions of IRF3 contribute to its antiviral effect.

View Article and Find Full Text PDF

IL-17A is a therapeutic target in many autoimmune diseases. Most nonhematopoietic cells express IL-17A receptors and respond to extracellular IL-17A by inducing proinflammatory cytokines. The IL-17A signal transduction triggers two broad, TRAF6- and TRAF5-dependent, intracellular signaling pathways to produce representative cytokines (IL-6) and chemokines (CXCL-1), respectively.

View Article and Find Full Text PDF

The interferon system is the first line of defense against virus infection. Recently, using a high-throughput genetic screen of a human interferon-stimulated gene short-hairpin RNA library, we identified a viral restriction factor, TDRD7 (Tudor domain-containing 7). TDRD7 inhibits the paramyxo-/pneumoviruses ( Sendai virus and respiratory syncytial virus) by interfering with the virus-induced cellular autophagy pathway, which these viruses use for their replication.

View Article and Find Full Text PDF

Dengue virus (DENV) comprises of four serotypes (DENV-1 to -4) and is medically one of the most important arboviruses (arthropod-borne virus). DENV infection is a major human health burden and is transmitted between humans by the insect vector, Aedes aegypti. Ae.

View Article and Find Full Text PDF

Begomoviruses are the largest group of plant viruses transmitted exclusively by the whitefly, (Gennadius), in a persistent, circulative, and nonpropagative manner. Begomoviruses in association with cause enormous loss to world agricultural crops. Transmission, retention, and circulation of begomovirus in are facilitated by its interaction with several proteins of the insect and its endosymbionts.

View Article and Find Full Text PDF

Bemisia tabaci (whitefly) is the sole vector of begomoviruses, which transmits them in a persistent and circulative manner from infected to healthy plants. During this process, begomoviruses interact with various proteins in the insect vector B. tabaci that would play a specific role in the virus transmission.

View Article and Find Full Text PDF

Microorganisms are known to devise various strategies to thwart protective responses by the host. One such strategy is to incorporate sequences and domains in their genes/proteins that have similarity to various domains of the host proteins. In this study, we report that protein Rv3529c exhibits significant similarity to the death domain of the TLR pathway adaptor protein MyD88.

View Article and Find Full Text PDF

Thrips palmi Karny is a globally distributed polyphagous agricultural pest. It causes huge economic loss by its biological behaviors like feeding, reproduction and transmission of tospoviruses. Since T.

View Article and Find Full Text PDF

Begomoviruses are a major group of plant viruses, transmitted exclusively by Bemisia tabaci (Gennadius) in a persistent circulative non-propagative manner. The information regarding molecular and cellular basis underlying Begomovirus - whitefly interaction is very scarce. Evidences have suggested that the insect gut possesses some crucial protein receptors that allow specific entry of virus into the insect haemolymph.

View Article and Find Full Text PDF

Bacterial endosymbionts have been associated with arthropods and large number of the insect species show interaction with such bacteria. Different approaches have been used to understand such symbiont- host interactions. The whitefly, Bemisia tabaci, a highly invasive agricultural pest, harbors as many as seven different bacterial endosymbionts.

View Article and Find Full Text PDF

Multiple strategies evolved by Mycobacterium tuberculosis (M. tb) have contributed to its successful prevalence. We previously identified specific genes in the cysteine protease and calcium-calmodulin pathways that regulated immune responses from dendritic cells (DCs).

View Article and Find Full Text PDF

Organismal lifespan is a complex trait that is governed by both its genetic makeup as well as the environmental conditions. The improved socioeconomic condition of humans has led to many lifestyle changes that in turn have altered the demography that includes postponement of procreation. Late age progeny is shown to suffer from many congenital diseases.

View Article and Find Full Text PDF

Cancer cells have an increased ability to squeeze through extracellular matrix gaps that they create by promoting proteolysis of its components. Major sites of degradation are specialized micro-domains in the plasma membrane collectively named invadosomes where the Arp2/3 complex and formin proteins cooperate to spatio-temporally control actin nucleation and the folding of a dynamic F-actin core. At invadosomes, proper coupling of exo-endocytosis allows polarized delivery of proteases that facilitate degradation of ECM and disruption of the cellular barrier.

View Article and Find Full Text PDF

RNA silencing is a conserved pathway that functions as an antiviral mechanism. The majority of viruses encode silencing suppressors that interfere with siRNA- and miRNA-guided silencing pathways. The insect flock house virus B2 protein (FHVB2) functions as an RNAi silencing suppressor that inhibits siRNA biogenesis.

View Article and Find Full Text PDF