Transcription factors (TFs) recognize specific bases within their DNA-binding motifs, with each base contributing nearly independently to total binding energy. However, the energetic contributions of particular dinucleotides can deviate strongly from the additive approximation, indicating that some TFs can specifically recognize DNA dinucleotides. Here we solved high-resolution (<1 Å) structures of MYF5 and BARHL2 bound to DNAs containing sets of dinucleotides that have different affinities to the proteins.
View Article and Find Full Text PDFNeuroblastoma is the most frequent extracranial pediatric tumor and leads to 15% of all cancer-related deaths in children. Tumor relapse and therapy resistance in neuroblastoma are driven by phenotypic plasticity and heterogeneity between noradrenergic (NOR) and mesenchymal (MES) cell states. Despite the importance of this phenotypic plasticity, the dynamics and molecular patterns associated with these bidirectional cell-state transitions remain relatively poorly understood.
View Article and Find Full Text PDFLong-term immunosuppressive therapy is a drug regimen often used to lower aggressive immune responses in various chronic inflammatory diseases. However, such long-term therapy leading to immune suppression may trigger other adverse reactions in the immune system. The rising concern regarding the optimal dose and duration of such treatment has motivated us to understand non-classical immunomodulatory responses induced by various immunosuppressive steroid and secosteroid drugs such as glucocorticoid and vitamin D supplements.
View Article and Find Full Text PDFRecent preclinical and clinical data suggests enhanced metastatic fitness of hybrid epithelial/mesenchymal (E/M) phenotypes, but mechanistic details regarding their survival strategies during metastasis remain unclear. Here, we investigate immune-evasive strategies of hybrid E/M states. We construct and simulate the dynamics of a minimalistic regulatory network encompassing the known associations among regulators of EMT (epithelial-mesenchymal transition) and PD-L1, an established immune-suppressor.
View Article and Find Full Text PDFThe steroid hormone glucocorticoid (GC) is a well-known immunosuppressant that controls T-cell-mediated adaptive immune response. In this work, we have developed a minimal kinetic network model of T-cell regulation connecting relevant experimental and clinical studies to quantitatively understand the long-term effects of GC on pro-inflammatory T-cell (T_{pro}) and anti-inflammatory T-cell (T_{anti}) dynamics. Due to the antagonistic relation between these two types of T cells, their long-term steady-state population ratio helps us to characterize three classified immune regulations: (i) weak ([T_{pro}]>[T_{anti}]), (ii) strong ([T_{pro}]<[T_{anti}]), and (iii) moderate ([T_{pro}]∼[T_{anti}]), holding the characteristic bistability.
View Article and Find Full Text PDF