Lenalidomide is an immunomodulatory drug (IMiDs) with clinical efficacy in multiple myeloma (MM) and other late B-cell neoplasms. Although cereblon () is an essential requirement for IMiD action, the complete molecular and biochemical mechanisms responsible for lenalidomide-mediated sensitivity or resistance remain unknown. Here, we report that IMiDs work primarily via inhibition of peroxidase-mediated intracellular HO decomposition in MM cells.
View Article and Find Full Text PDFΔEGFR is a potent glioblastoma oncogene which has been studied primarily as a plasma membrane kinase. Using intracranial xenograft studies in mice, we show that blocking ΔEGFR access to the nucleus attenuates its tumorigenicity and, conversely, that promoting nuclear accumulation enhances this, providing the first in vivo evidence that the nuclear actions of ΔEGFR contribute strongly to its oncogenic function. Nuclear actions of ΔEGFR include regulation of gene expression by participation in chromatin-bound complexes, and genome-wide mapping of these sequences by chromatin immunoprecipitation and massively parallel sequencing identified 2294 peaks.
View Article and Find Full Text PDFBackground: Three dimensional (3D) growths of cancer cells in vitro are more reflective of in situ cancer cell growth than growth in monolayer (2D). The present study is designed to determine changes in protein and phosphoprotein that reflect adaptation of tumor cells to 3D as compared to 2D. Since relative hypoxia is a common feature of most solid tumors, the present study also aims to look at the impact of transition from normoxia to hypoxia in these two growth conditions.
View Article and Find Full Text PDFTumor cells undergoing serum starvation in vitro partially mimic metabolically stressed cells trying to adjust to a changed environment in vivo by inducing signal transduction and gene expression so that the tumor continues to grow. Our hypothesis is that the changes in protein and phosphoprotein levels after serum starvation may reflect the adapted phenotype of the tumor, which could be targeted for therapy. We used reverse-phase protein microarrays to interrogate five high-grade glioma cell lines and seven adenocarcinoma cell lines for differences in the level of 81 proteins and 25 phosphoproteins.
View Article and Find Full Text PDFThe goal of our study was two-fold: (i) develop a robust 3D colony assay methodology to interrogate drug combinations using GelCount and (ii) to develop 2-drug combinations that might be useful in the clinic for the treatment of high-grade gliomas. We used three glioma cell lines (U251MG, SNB19, and LNZ308) and two adenocarcinoma cell lines (MiaPaCa and SW480) grown as colonies in a two-tiered agarose cultures. We evaluated two-drug combinations of difluoromethylornithine (DFMO), carboplatin, vorinostat (SAHA), and docetaxel.
View Article and Find Full Text PDFTechnol Cancer Res Treat
August 2008
The evaluation of new drug treatments and combination treatments for gliomas and other cancers requires a robust means to interrogate wide dose ranges and varying times of drug exposure without stain-inactivation of the cells (colonies). To this end, we developed a 3-dimensional (3D) colony formation assay that makes use of GelCount technology, a new cell colony counter for gels and soft agars. We used U251MG, SNB19, and LNZ308 glioma cell lines and MiaPaCa pancreas adenocarcinoma and SW480 colon adenocarcinoma cell lines.
View Article and Find Full Text PDF