Myotonic dystrophy (DM1) is a highly variable, multi-system disorder resulting from the expansion of an untranslated CTG tract in DMPK. In DM1 expanded CUG repeat RNAs form hairpin secondary structures that bind and aberrantly sequester the RNA splice regulator, MBNL1. RNA splice defects resulting as a consequence of MBNL1 depletion have been shown to play a key role in the development of DM1 pathology.
View Article and Find Full Text PDFTo understand the role of the splice regulator muscleblind 1 (MBNL1) in the development of RNA splice defects in myotonic dystrophy I (DM1), we purified RNA-independent MBNL1 complexes from normal human myoblasts and examined the behavior of these complexes in DM1 myoblasts. Antibodies recognizing MBNL1 variants (MBNL1(CUG)), which can sequester in the toxic CUG RNA foci that develop in DM1 nuclei, were used to purify MBNL1(CUG) complexes from normal myoblasts. In normal myoblasts, MBNL1(CUG) bind 10 proteins involved in remodeling ribonucleoprotein complexes including hnRNP H, H2, H3, F, A2/B1, K, L, DDX5, DDX17, and DHX9.
View Article and Find Full Text PDFWe describe a new mechanism by which CTG tract expansion affects myotonic dystrophy (DM1). Changes to the levels of a panel of RNAs involved in muscle development and function that are downregulated in DM1 are due to aberrant localization of the transcription factor SHARP (SMART/HDAC1-associated repressor protein). Mislocalization of SHARP in DM1 is consistent with increased CRM1-mediated export of SHARP to the cytoplasm.
View Article and Find Full Text PDFThe lymphoid tyrosine phosphatase LYP, encoded by the PTPN22 gene, recently emerged as a major player and candidate drug target for human autoimmunity. The enzyme includes a classical N-terminal protein tyrosine phosphatase catalytic domain and a C-terminal PEST-enriched domain, separated by an approximately 300-amino acid interdomain. Little is known about the regulation of LYP.
View Article and Find Full Text PDFTelomere dysfunction has been proposed to contribute to the pathogenesis of Werner syndrome (WS), a premature-aging disorder. The WS protein WRN binds TRF2, a telomere-specific factor that protects chromosome ends. TRF2 possesses an amino-terminal domain that plays an essential role in preventing telomere shortening, as expression of TRF2(DeltaB), which lacks this domain, leads to the formation of telomeric circles, telomere shortening, and cell senescence.
View Article and Find Full Text PDFTwo facile, convenient, and versatile synthetic approaches are used to covalently attach carbohydrate residues to conjugated poly(p-phenylene)s (PPPs) for highly water-soluble PPPs bearing alpha-mannopyranosyl and beta-glucopyranosyl pendants (polymers A and B), which highly fluoresce in phosphate buffer (pH 7.0). The post-polymerization functionalization approach is to treat bromo-bearing PPP (polymer 1) with 1-thiolethyl-alpha-D-mannose tetraacetate or 1-thiol-beta-D-glucose tetraacetate in THF solution in the presence of K(2)CO(3) at room temperature through formation of thioether bridges, affording polymer 2a or 2b.
View Article and Find Full Text PDFPhytic acid is the most abundant inositol phosphate in cells; it constitutes 1-5% of the dry weight of cereal grains and legumes. Phytases are the primary enzymes responsible for the hydrolysis of phytic acid and thus play important roles in inositol phosphate metabolism. A novel alkaline phytase in lily pollen (LlALP) was recently purified in our laboratory.
View Article and Find Full Text PDFPhytases catalyze the hydrolysis of phytic acid (myo-inositol hexakisphosphate), the most abundant inositol phosphate in cells. Phytases are of great commercial importance because their use as food and animal feed supplement has been approved by many countries to alleviate environmental and nutritional problems. Although acid phytases have been extensively studied, information regarding alkaline phytases is limited.
View Article and Find Full Text PDFArch Biochem Biophys
August 2005
Phytases catalyze the hydrolysis of phytic acid (InsP6, myo-inositol hexakisphosphate), the most abundant inositol phosphate in cells. In cereal grains and legumes, it constitutes 3-5% of the dry weight of seeds. The inability of humans and monogastric animals such as swine and poultry to absorb complexed InsP6 has led to nutritional and environmental problems.
View Article and Find Full Text PDF