Publications by authors named "Sonal Deshpande"

The efficacy of tumor-targeted therapeutics, engineered to engage specific cellular receptors to promote accumulation and penetration, is strongly influenced by the carrier's affinity for its target and the valency of binding molecules incorporated into the carrier. Previous research has primarily focused on improving targeting by augmenting the number of binding proteins on the carrier, inadvertently raising avidity without isolating the individual effects of binding strength and valency. Herein, we precisely evaluate the impact of multivalency on tumor targeting with a recombinant approach to independently control valency, avidity, and size.

View Article and Find Full Text PDF

Introduction: Various tools for measuring health literacy are designed to assess reading comprehension and numeracy in English speakers. There is a need to develop a tool in the vernacular language and estimate health literacy levels in Indian settings. The present study was conducted with the objectives to develop a Marathi version of a 14-item health literacy scale (HLS-14) to test the reliability and validity of its Marathi version and to estimate the health literacy among patients attending the out-patient department at a tertiary care centre.

View Article and Find Full Text PDF

We report the de novo design of small (<20 kDa) and highly soluble synthetic intrinsically disordered proteins (SynIDPs) that confer solubility to a fusion partner with minimal effect on the activity of the fused protein. To identify highly soluble SynIDPs, we create a pooled gene-library utilizing a one-pot gene synthesis technology to create a large library of repetitive genes that encode SynIDPs. We identify three small (<20 kDa) and highly soluble SynIDPs from this gene library that lack secondary structure and have high solvation.

View Article and Find Full Text PDF

We report a targeted prodrug delivery platform that can deliver a cytostatic nucleobase analog with high drug loading. We chose fluorouracil (5FU), a drug used to treat various cancers, whose active metabolite 5-fluorodeoxyuridine monophosphate (5-FdUMP) is the antineoplastic agent. We use terminal deoxynucleotidyl transferase (TdT) to polymerize 5-fluorodeoxyuridine triphosphate (5-FdUTP) onto the 3'-end of an aptamer.

View Article and Find Full Text PDF

The development of platinum(Pt)-drugs for cancer therapy has stalled, as no new Pt-drugs have been approved in over a decade. Packaging small molecule drugs into nanoparticles is a way to enhance their therapeutic efficacy. To date, there has been no direct comparison of relative merits of the choice of Pt oxidation state in the same nanoparticle system that would allow its optimal design.

View Article and Find Full Text PDF

Combining surface-initiated, TdT (terminal deoxynucleotidyl transferase) catalyzed enzymatic polymerization (SI-TcEP) with precisely engineered DNA origami nanostructures (DONs) presents an innovative pathway for the generation of stable, polynucleotide brush-functionalized DNA nanostructures. We demonstrate that SI-TcEP can site-specifically pattern DONs with brushes containing both natural and non-natural nucleotides. The brush functionalization can be precisely controlled in terms of the location of initiation sites on the origami core and the brush height and composition.

View Article and Find Full Text PDF

The recognition that nucleic acids can be used as polymeric materials led to the blossoming of the field of DNA nanotechnology, with a broad range of applications in biotechnology, biosensors, diagnostics, and drug delivery. These applications require efficient methods to synthesize and chemically modify high molecular weight DNA. Here, we discuss terminal deoxynucleotidyl transferase (TdT)-catalyzed enzymatic polymerization (TcEP) as an alternative to conventional enzymatic and solid-phase DNA synthesis.

View Article and Find Full Text PDF

Polo-like-kinase 1 (PLK1), which is a serine-threonine protein kinase overexpressed in cancer cells, is known to regulate tumor growth and have recently gathered attention as a target gene for RNA interference because of the poor bioavailability and nonspecificity of the available inhibitors. However, the lower transfection efficiency of siRNA and its poor stability in biological mileu necessitate the need of efficient siRNA delivery systems. Here, we report efficacious polymeric nanoparticles for the delivery of PLK1 siRNA in mammalian cancer cells.

View Article and Find Full Text PDF

One of the challenges in designing a successful drug-delivery vehicle is the control over drug release. Toward this, a number of multifunctional nanoparticles with multiple triggers and complex chemistries have been developed. To achieve an efficient and maximum therapeutic effect, a trigger dependent drug-delivery system with sustained release is desirable.

View Article and Find Full Text PDF

RNAi is emerging as a promising technology for treatment of various diseases due to its ability to silence specific target genes. To date, a number of nanoparticle based formulations have been reported for the delivery of small interfering RNA (siRNA), with continuous modifications in the nanoparticle design for enhancing their efficiency. While majority of the design aspects are focused on avoiding or overcoming endosomal entrapment, limited studies are available that address the role of interaction of nanoparticles with the RNA induced silencing complex (RISC) machinery, which is a crucial aspect deciding the outcome.

View Article and Find Full Text PDF

Interaction of nanoparticles with biological systems is a key factor influencing their efficacy as a drug delivery vehicle. The inconsistency in defining the optimal design parameters across different nanoparticle types suggests that information gained from one model system need not apply to other systems. Therefore, selection of a versatile model system is critical for such studies.

View Article and Find Full Text PDF

Despite the promising photophysical properties of fluorescent graphene quantum dots (GQDs), their cellular toxicity needs to be addressed before their full potential could be completely realized in biomedicine. A simple method for mitigating the toxicity of GQDs by embedding them in PEG matrix is reported here. The enhanced biocompatibility of polymer modified, P-GQDs, is attributed to reduced reactive oxygen species generation, as measured by an intracellular ROS assay.

View Article and Find Full Text PDF

We report the preparation and characterization of monoolein cubosomes that can be easily surface modified through adsorption of a single layer of cationic poly-ε-lysine. Poly-ε-lysine coated cubosomes show remarkable stability in serum solution, are nontoxic and, are readily internalized by HeLa cells. The poly-ε-lysine coating provides chemical handles for further bioconjugation of the cubosome surface.

View Article and Find Full Text PDF