Large-area epitaxial growth of III-V nanowires and thin films on van der Waals substrates is key to developing flexible optoelectronic devices. In our study, large-area InAs nanowires and planar structures are grown on hexagonal boron nitride templates using metal organic chemical vapor deposition method without any catalyst or pre-treatments. The effect of basic growth parameters on nanowire yield and thin film morphology is investigated.
View Article and Find Full Text PDFGaN/AlGaN core-shell nanowires with various Al compositions have been grown on GaN nanowire array using selective area metal organic chemical vapor deposition technique. Growth of the AlGaN shell using pure N carrier gas resulted in a smooth surface for the nonpolar -plane sidewalls with superior optical properties, whereas, growth using a mixed N/H carrier gas resulted in a striated surface similar to the commonly observed morphology in the growth of nonpolar III-nitrides. The Al compositions in the AlGaN shells are found to be less than the gas phase input ratio.
View Article and Find Full Text PDFIn this paper, we have made a clear differentiation among bandgap, diffraction, interference, and refraction effects in photonic crystal structures (PhCs). For observing bandgap, diffraction, and refraction effects, PhCs are considered on the top p-GaN surface of light emitting diodes (LEDs), whereas for interference effect, hole type PhCs are considered to be embedded within n-GaN layer of LED. From analysis, it is observed that at a particular lattice periodicity, for which bandgap lies within the wavelength of interest shows a significant light extraction due to inhibition of guided mode.
View Article and Find Full Text PDF