Micromachines (Basel)
October 2023
Binary memristor crossbars have great potential for use in brain-inspired neuromorphic computing. The complementary crossbar array has been proposed to perform the Exclusive-NOR function for neuromorphic pattern recognition. The single crossbar obtained by shortening the Exclusive-NOR function has more advantages in terms of power consumption, area occupancy, and fault tolerance.
View Article and Find Full Text PDFWe performed a comparative study on the Gaussian noise and memristance variation tolerance of three crossbar architectures, namely the complementary crossbar architecture, the twin crossbar architecture, and the single crossbar architecture, for neuromorphic image recognition and conducted an experiment to determine the performance of the single crossbar architecture for simple pattern recognition. Ten grayscale images with the size of 32 × 32 pixels were used for testing and comparing the recognition rates of the three architectures. The recognition rates of the three memristor crossbar architectures were compared to each other when the noise level of images was varied from -10 to 4 dB and the percentage of memristance variation was varied from 0% to 40%.
View Article and Find Full Text PDFMaterials (Basel)
December 2019
Memristor crossbar arrays without selector devices, such as complementary-metal oxide semiconductor (CMOS) devices, are a potential for realizing neuromorphic computing systems. However, wire resistance of metal wires is one of the factors that degrade the performance of memristor crossbar circuits. In this work, we propose a wire resistance modeling method and a parasitic resistance-adapted programming scheme to reduce the impact of wire resistance in a memristor crossbar-based neuromorphic computing system.
View Article and Find Full Text PDFMicromachines (Basel)
October 2019
Wire resistance in metal wire is one of the factors that degrade the performance of memristor crossbar circuits. In this paper, an analysis of the impact of wire resistance in a memristor crossbar is performed and a compensating circuit is proposed to reduce the impact of wire resistance in a memristor crossbar-based perceptron neural network. The goal of the analysis is to figure out how wire resistance influences the output voltage of a memristor crossbar.
View Article and Find Full Text PDFIn this paper, we propose a new time-shared twin memristor crossbar for pattern-recognition applications. By sharing two memristor arrays at different time, the number of memristor arrays can be reduced by half, saving the crossbar area by half, too. To implement the time-shared twin memristor crossbar, we also propose CMOS time-shared subtractor circuit, in this paper.
View Article and Find Full Text PDFThis paper performs a comparative study on the statistical-variation tolerance between two crossbar architectures which are the complementary and twin architectures. In this comparative study, 10 greyscale images and 26 black-and-white alphabet characters are tested using the circuit simulator to compare the recognition rate with varying statistical variation and correlation parameters.As with the simulation results of 10 greyscale image recognitions, the twin crossbar shows better recognition rate by 4 % on average than the complementary one, when the inter-array correlation = 1 and intra-array correlation = 0.
View Article and Find Full Text PDFIn this paper, a neuromorphic crossbar circuit with binary memristors is proposed for speech recognition. The binary memristors which are based on filamentary-switching mechanism can be found more popularly and are easy to be fabricated than analog memristors that are rare in materials and need a more complicated fabrication process. Thus, we develop a neuromorphic crossbar circuit using filamentary-switching binary memristors not using interface-switching analog memristors.
View Article and Find Full Text PDF