Evaluating the forthcoming impacts of climate change is important for formulating efficient and flexible approaches to water resource management. General Circulation Models (GCMs) are primary tools that enable scientists to study both past and potential future climate changes, as well as their impacts on policies and actions. In this work, we quantify the future projected impacts of hydroclimatic extremes on the coastal, risk-prone Tar-Pamlico River basin in North Carolina using GCMs from the Sixth International Coupled Model Intercomparison Project (CMIP6).
View Article and Find Full Text PDFDespite the potential of remote sensing for monitoring reservoir operation, few studies have investigated the extent to which reservoir releases can be inferred across different spatial and temporal scales. Through evaluating 21 reservoirs in the highly regulated Greater Mekong region, remote sensing imagery was found to be useful in estimating daily storage volumes for within-year and over-year reservoirs (correlation coefficients [CC] ≥ 0.9, normalized root mean squared error [NRMSE] ≤ 31%), but not for run-of-river reservoirs (CC < 0.
View Article and Find Full Text PDF