There is a growing interest in using social media content for Natural Language Processing applications. However, it is not easy to computationally identify the most relevant set of tweets related to any specific event. Challenging semantics coupled with different ways for using natural language in social media make it difficult for retrieving the most relevant set of data from any social media outlet.
View Article and Find Full Text PDFBackground: Annotating scientific literature with ontology concepts is a critical task in biology and several other domains for knowledge discovery. Ontology based annotations can power large-scale comparative analyses in a wide range of applications ranging from evolutionary phenotypes to rare human diseases to the study of protein functions. Computational methods that can tag scientific text with ontology terms have included lexical/syntactic methods, traditional machine learning, and most recently, deep learning.
View Article and Find Full Text PDFHealthcare costs due to unplanned readmissions are high and negatively affect health and wellness of patients. Hospital readmission is an undesirable outcome for elderly patients. Here, we present readmission risk prediction using five machine learning approaches for predicting 30-day unplanned readmission for elderly patients (age ≥ 50 years).
View Article and Find Full Text PDFStreaming social media provides a real-time glimpse of extreme weather impacts. However, the volume of streaming data makes mining information a challenge for emergency managers, policy makers, and disciplinary scientists. Here we explore the effectiveness of data learned approaches to mine and filter information from streaming social media data from Hurricane Irma's landfall in Florida, USA.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
November 2019
Background: Diabetes and cardiovascular disease are two of the main causes of death in the United States. Identifying and predicting these diseases in patients is the first step towards stopping their progression. We evaluate the capabilities of machine learning models in detecting at-risk patients using survey data (and laboratory results), and identify key variables within the data contributing to these diseases among the patients.
View Article and Find Full Text PDF