Publications by authors named "Somshuvra Bhattacharya"

Background: The dismal prognosis of advanced ovarian cancer calls for the development of novel therapies to improve disease outcome. In this regard, we set out to discover new molecular entities and to assess the preclinical effectiveness of their targeting.

Methods: Cell lines, mice and human ovarian cancer samples were used.

View Article and Find Full Text PDF

The fact that animal models fail to replicate human disease faithfully is now being widely accepted by researchers across the globe. As a result, they are exploring the use of alternatives to animal models. The time has come to refine our experimental practices, reduce the numbers and eventually replace the animals used in research with human-derived and human-relevant 3-D disease models.

View Article and Find Full Text PDF

This study investigates the effects of a dual selective Class I histone deacetylase (HDAC)/lysine-specific histone demethylase 1A (LSD1) inhibitor known as 4SC-202 (Domatinostat) on tumor growth and metastasis in a highly metastatic murine model of Triple Negative Breast Cancer (TNBC). 4SC-202 is cytotoxic and cytostatic to the TNBC murine cell line 4T1 and the human TNBC cell line MDA-MB-231; the drug does not kill the normal breast epithelial cell line MCF10A. Furthermore, 4SC-202 reduces cancer cell migration.

View Article and Find Full Text PDF

Oxygen deprivation within tumors is one of the most prevalent causes of resilient cancer cell survival and increased immune evasion in breast cancer (BCa). Current models do not adequately mimic physiological oxygen levels relevant to breast tissue and its tumor-immune interactions. In this study, we propose an approach to engineer a three-dimensional (3D) model (named 3D engineered oxygen, 3D-O) that supports the growth of BCa cells and generates physio- and pathophysiological oxygen levels to understand the role of oxygen availability in tumor-immune interactions.

View Article and Find Full Text PDF

Lack of efficacy and a low overall success rate of phase I-II clinical trials are the most common failures when it comes to advancing cancer treatment. Current drug sensitivity screenings present several challenges including differences in cell growth rates, the inconsistent use of drug metrics, and the lack of translatability. Here, we present a patient-derived 3D culture model to overcome these limitations in breast cancer (BCa).

View Article and Find Full Text PDF

The heterogeneous tumor microenvironment (TME) is highly complex and not entirely understood. These complex configurations lead to the generation of oxygen-deprived conditions within the tumor niche, which modulate several intrinsic TME elements to promote immunosuppressive outcomes. Decoding these communications is necessary for designing effective therapeutic strategies that can effectively reduce tumor-associated chemotherapy resistance by employing the inherent potential of the immune system.

View Article and Find Full Text PDF

Central nervous system atypical teratoid/rhabdoid tumors (ATRTs) are rare and aggressive tumors with a very poor prognosis. Current treatments for ATRT include resection of the tumor, followed by systemic chemotherapy and radiation therapy, which have toxic side effects for young children. Gene expression analyses of human ATRTs and normal brain samples indicate that ATRTs have aberrant expression of epigenetic markers including class I histone deacetylases (HDAC's) and lysine demethylase (LSD1).

View Article and Find Full Text PDF