A gram-negative bacterium designated as RTSB was isolated from a petroleum-contaminated soil competent of utilizing acenaphthene as the solitary source of carbon and energy. The strain RTSB was identified as a Sphingobacterium species based on the morphological, nutritional and biochemical features of the organism as well as 16S rRNA sequence analysis. By a combination of chromatographic and spectrometric techniques, different metabolites of the acenaphthene degradation pathway by the strain RTSB were isolated and identified, which indicate a novel acenaphthene degradation pathway involving 1-naphthoic acid.
View Article and Find Full Text PDFWidespread environmental pollution by polycyclic aromatic hydrocarbons (PAHs) poses an immense risk to the environment. Bacteria-mediated attenuation has a great potential for the restoration of PAH-contaminated environment in an ecologically accepted manner. Bacterial degradation of PAHs has been extensively studied and mining of biodiversity is ever expanding the biodegradative potentials with intelligent manipulation of catabolic genes and adaptive evolution to generate multiple catabolic pathways.
View Article and Find Full Text PDFThe multienzyme complex SoxXABYZ(CD)(2), characteristic of facultatively chemolithotrophic Alphaproteobacteria, oxidizes both sulfone and sulfane sulfur species directly to sulfate, while a truncated SoxXABYZ oxidizes only sulfone sulfur in species of Chromatiaceae and Chlorobi. Here we phylogenetically analyzed SoxXA, SoxYZ and SoxCD sequences, correlated the results with earlier SoxB-based data, and postulated that the system originated in putatively common ancestors of Aquificae and Epsilonproteobacteria, and evolved through extensive horizontal gene transfer, accompanied by gain and/or loss of constituents by different lineages. However, in several Sox systems, particularly those from Alphaproteobacteria (and also Chromatiaceae and Chlorobi), there has been no extra gain or loss of constituents and all their proteins have similar evolutionary paths.
View Article and Find Full Text PDFStaphylococcus sp. strain PN/Y, capable of utilizing phenanthrene as a sole source of carbon and energy, was isolated from petroleum-contaminated soil. In the degradation of phenanthrene by strain PN/Y, various metabolites, isolated and identified by a combination of chromatographic and spectrometric analyses, revealed a novel phenanthrene assimilation pathway involving 2-hydroxy-1-naphthoic acid.
View Article and Find Full Text PDFIn the present study, the metabolic pathways involved in the degradation of benzyl alcohol and 1-butanol, the hydrolyzed products of butyl benzyl phthalate, were investigated by the Gordonia sp. strain MTCC 4818. The strain can utilize both benzyl alcohol and 1-butanol individually as sole carbon sources, where benzyl alcohol was found to be metabolized via benzaldehyde, benzoic acid and catechol, which was further degraded by ortho-cleavage dioxygenase to cis,cis-muconic acid and subsequently to muconolactone leading to tricarboxylic acid cycle.
View Article and Find Full Text PDF