The characteristics of the vegetation fire (VF) regime are strongly influenced by geographical variables such as regional physiographic settings, location, and climate. Understanding the VF regime is extremely important for managing and mitigating the impacts of fires on ecosystems, communities, and human activities in forest fire-prone regions. The present study thereby aimed to explore the potential effects of the confounding factors on VF in India to offer actionable and achievable solutions for mitigating this concurring environmental issue sustainably.
View Article and Find Full Text PDFDespite advancements in using multi-temporal satellite data to assess long-term changes in Northeast India's tea plantations, a research gap exists in understanding the intricate interplay between biophysical and biochemical characteristics. Further exploration is crucial for precise, sustainable monitoring and management. In this study, satellite-derived vegetation indices and near-proximal sensor data were deployed to deduce various physico-chemical characteristics and to evaluate the health conditions of tea plantations in northeast India.
View Article and Find Full Text PDFForest fires impact on soil, water, and biota resources. The current forest fires in the West Coast of the United States (US) profoundly impacted the atmosphere and air quality across the ecosystems and have caused severe environmental and public health burdens. Forest fire led emissions could significantly exacerbate the air pollution level and, therefore, would play a critical role if the same occurs together with any epidemic and pandemic health crisis.
View Article and Find Full Text PDFThe outbreak of SARS CoV-2 (COVID-19) has posed a serious threat to human beings, society, and economic activities all over the world. Worldwide rigorous containment measures for limiting the spread of the virus have several beneficial environmental implications due to decreased anthropogenic emissions and air pollutants, which provide a unique opportunity to understand and quantify the human impact on atmospheric environment. In the present study, the associated changes in Land Surface Temperature (LST), aerosol, and atmospheric water vapor content were investigated over highly COVID-19 impacted areas, namely, Europe and North America.
View Article and Find Full Text PDFSARS CoV-2 (COVID-19) coronavirus has been causing enormous suffering, death, and economic losses worldwide. There are rigorous containment measures on industries, non-essential business, transportation, and citizen mobility to check the spread. The lockdowns may have an advantageous impact on reducing the atmospheric pollutants.
View Article and Find Full Text PDFThe SARS CoV-2 (COVID-19) pandemic and the enforced lockdown have reduced the use of surface and air transportation. This study investigates the impact of the lockdown restrictions in India on atmospheric composition, using Sentinel-5Ps retrievals of tropospheric NO concentration and ground-station measurements of NO and PM between March-May in 2019 and 2020. Detailed analysis of the changes to atmospheric composition are carried out over six major urban areas (i.
View Article and Find Full Text PDFThe countries around the world are dealing with air quality issues for decades due to their mode of production and energy usages. The outbreak of COVID-19 as a pandemic and consequent global economic shutdown, for the first time, provided a base for the real-time experiment of the effect of reduced emissions across the globe in abetting the air pollution issue. The present study dealt with the changes in Aerosol Optical Depth (AOD), a marker of air pollution, because of global economic shutdown due to the coronavirus pandemic.
View Article and Find Full Text PDF