Publications by authors named "Sommermeyer D"

Study Objectives: Advanced signal processing of photoplethysmographic data enables novel analyses which may improve the understanding of the pathogenesis of dysglycemia associated with sleep disorders. We aimed to identify sleep-related pulse wave characteristics in diabetic patients compared to normoglycemic individuals, independent of cardiovascular-related comorbidities.

Methods: This cross-sectional evaluation of the population-based Swedish CArdioPulmonary bioImage Study (SCAPIS) included overnight oximetry-derived pulse wave data from 3997 subjects (45 % males, age 50-64 years).

View Article and Find Full Text PDF

The hostile tumor microenvironment (TME) is a major challenge for the treatment of solid tumors with T-cell receptor (TCR)-modified T-cells (TCR-Ts), as it negatively influences T-cell efficacy, fitness, and persistence. These negative influences are caused, among others, by the inhibitory checkpoint PD-1/PD-L1 axis. The Preferentially Expressed Antigen in Melanoma (PRAME) is a highly relevant cancer/testis antigen for TCR-T immunotherapy due to broad expression in multiple solid cancer indications.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-modified T cell therapy is effective in treating lymphomas, leukemias, and multiple myeloma in which the tumor cells express high amounts of target antigen. However, achieving durable remission for these hematological malignancies and extending CAR T cell therapy to patients with solid tumors will require receptors that can recognize and eliminate tumor cells with a low density of target antigen. Although CARs were designed to mimic T cell receptor (TCR) signaling, TCRs are at least 100-fold more sensitive to antigen.

View Article and Find Full Text PDF

Recent evidence supports the use of pulse wave analysis during sleep for assessing functional aspects of the cardiovascular system. The current study compared the influence of pulse wave and sleep study-derived parameters on cardiovascular risk assessment. In a multi-centric study design, 358 sleep apnea patients (age 55 ± 13 years, 64% male, body mass index 30 ± 6 kg m , apnea-hypopnea index 13 [5-26] events per hr) underwent a standard overnight sleep recording.

View Article and Find Full Text PDF

Background: The cancer-testis antigen MAGE-A4 is an attractive target for T-cell-based immunotherapy, especially for indications with unmet clinical need like non-small cell lung or triple-negative breast cancer.

Methods: An unbiased CD137-based sorting approach was first used to identify an immunogenic MAGE-A4-derived epitope (GVYDGREHTV) that was properly processed and presented on human leukocyte antigen (HLA)-A2 molecules encoded by the HLA-A*02:01 allele. To isolate high-avidity T cells via subsequent multimer sorting, an in vitro priming approach using HLA-A2-negative donors was conducted to bypass central tolerance to this self-antigen.

View Article and Find Full Text PDF

Insomnia has been associated with increased cardiovascular (CV) risk, which may be linked to sympathetic activation. Non-invasive overnight pulse wave analysis may be a useful tool to detect early signs of autonomic changes during sleep in insomniacs. Fifty-two participants (26 men, 37±13 years, BMI: 24±5 kg/m2, 26 insomniacs/ 26 controls) underwent overnight polysomnography with pulse oximetry and pulse wave analysis including pulse rate, vascular stiffness (pulse propagation time, PPT), and a composite cardiac risk index based on autonomic function and overnight hypoxia.

View Article and Find Full Text PDF

Chimeric antigen receptors (CARs) link an antigen recognition domain to intracellular signaling domains to redirect T cell specificity and function. T cells expressing CARs with CD28/CD3ζ or 4-1BB/CD3ζ signaling domains are effective at treating refractory B cell malignancies but exhibit differences in effector function, clinical efficacy, and toxicity that are assumed to result from the activation of divergent signaling cascades. We analyzed stimulation-induced phosphorylation events in primary human CD8 CD28/CD3ζ and 4-1BB/CD3ζ CAR T cells by mass spectrometry and found that both CAR constructs activated similar signaling intermediates.

View Article and Find Full Text PDF

Leukemia relapse remains the major cause of allogeneic hematopoietic stem cell transplantation (HCT) failure, and the prognosis for patients with post-HCT relapse is poor. There is compelling evidence that potent selective antileukemic effects can be delivered by donor T cells specific for particular minor histocompatibility (H) antigens. Thus, T-cell receptors (TCRs) isolated from minor H antigen-specific T cells represent an untapped resource for developing targeted T-cell immunotherapy to manage post-HCT leukemic relapse.

View Article and Find Full Text PDF

Arterial stiffness, a marker for cardiovascular risk, is increased in patients with Chronic Obstructive Pulmonary Disease (COPD) and Obstructive Sleep Apnea (OSA). The specific influence of both on arterial stiffness during sleep is unknown. Nocturnal arterial stiffness (Pulse Propagation Time (PPT) of the finger pulse wave) was calculated in 142 individuals evaluated for sleep apnea: 27 COPD patients (64.

View Article and Find Full Text PDF

The relative contribution of the effector molecules produced by T cells to tumour rejection is unclear, but interferon-γ (IFNγ) is critical in most of the analysed models. Although IFNγ can impede tumour growth by acting directly on cancer cells, it must also act on the tumour stroma for effective rejection of large, established tumours. However, which stroma cells respond to IFNγ and by which mechanism IFNγ contributes to tumour rejection through stromal targeting have remained unknown.

View Article and Find Full Text PDF

Impressive results have been achieved by adoptively transferring T-cells expressing CD19-specific CARs with binding domains from murine mAbs to treat B-cell malignancies. T-cell mediated immune responses specific for peptides from the murine scFv antigen-binding domain of the CAR can develop in patients and result in premature elimination of CAR T-cells increasing the risk of tumor relapse. As fully human scFv might reduce immunogenicity, we generated CD19-specific human scFvs with similar binding characteristics as the murine FMC63-derived scFv using human Ab/DNA libraries.

View Article and Find Full Text PDF

This study examines cell surface ROR1 expression in human tumors and normal tissues. ROR1 is considered a promising target for cancer therapy due to putative tumor-specific expression, and multiple groups are developing antibodies and/or chimeric antigen receptor-modified T cells to target ROR1. On-target, off-tumor toxicity is a challenge for most nonmutated tumor antigens; however, prior studies suggest that ROR1 is absent on most normal tissues.

View Article and Find Full Text PDF

Objectives: Reflection of the finger pulse wave form is a valid measure of arterial stiffness, which may be continuously assessed during sleep. We investigated the relationships between sleep, sleep-disordered breathing, hypertension, and pulse propagation time (PPT) in patients with suspected sleep apnea.

Methods: The digital photoplethysmographic signal derived from finger pulse oximetry was recorded during overnight sleep studies in 440 patients (64% men, age 55 ± 12 years, BMI 30 ± 6 kg/m, apnea-hypopnea index 19 ± 19 n/h).

View Article and Find Full Text PDF

The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells.

View Article and Find Full Text PDF

Background: Sleep-related breathing disorders may promote cardiovascular (CV) diseases. A novel and differentiated approach to overnight photoplethysmographic pulse wave analysis, which includes risk assessment and measurement of various pulse wave characteristics, has been evaluated in obstructive sleep apnea (OSA).

Objectives: The purpose of this study was to assess if and which of the differentiated pulse wave characteristics might be influenced by OSA treatment with positive airway pressure (PAP).

View Article and Find Full Text PDF

Background: T cells that have been modified to express a CD19-specific chimeric antigen receptor (CAR) have antitumor activity in B cell malignancies; however, identification of the factors that determine toxicity and efficacy of these T cells has been challenging in prior studies in which phenotypically heterogeneous CAR-T cell products were prepared from unselected T cells.

Methods: We conducted a clinical trial to evaluate CD19 CAR-T cells that were manufactured from defined CD4+ and CD8+ T cell subsets and administered in a defined CD4+:CD8+ composition to adults with B cell acute lymphoblastic leukemia after lymphodepletion chemotherapy.

Results: The defined composition product was remarkably potent, as 27 of 29 patients (93%) achieved BM remission, as determined by flow cytometry.

View Article and Find Full Text PDF

Adoptive transfer of primary (unmodified) or genetically engineered antigen-specific T cells has demonstrated astonishing clinical results in the treatment of infections and some malignancies. Besides the definition of optimal targets and antigen receptors, the differentiation status of transferred T cells is emerging as a crucial parameter for generating cell products with optimal efficacy and safety profiles. Long-living memory T cells subdivide into phenotypically as well as functionally different subsets (e.

View Article and Find Full Text PDF

Adoptive immunotherapy with genetically engineered T cells has the potential to treat cancer and other diseases. The introduction of Strep-tag II sequences into specific sites in synthetic chimeric antigen receptors or natural T-cell receptors of diverse specificities provides engineered T cells with a marker for identification and rapid purification, a method for tailoring spacer length of chimeric receptors for optimal function, and a functional element for selective antibody-coated, microbead-driven, large-scale expansion. These receptor designs facilitate cGMP manufacturing of pure populations of engineered T cells for adoptive T-cell therapies and enable in vivo tracking and retrieval of transferred cells for downstream research applications.

View Article and Find Full Text PDF

Cardiovascular disease is the main cause of death in Europe, and early detection of increased cardiovascular risk (CR) is of clinical importance. Pulse wave analysis based on pulse oximetry has proven useful for the recognition of increased CR. The current study provides a detailed description of the pulse wave analysis technology and its clinical application.

View Article and Find Full Text PDF

Adoptive T-cell therapy with gene-modified T cells expressing a tumor-reactive T-cell receptor or chimeric antigen receptor (CAR) is a rapidly growing field of translational medicine and has shown success in the treatment of B-cell malignancies and solid tumors. In all reported trials, patients have received T-cell products comprising random compositions of CD4(+) and CD8(+) naive and memory T cells, meaning that each patient received a different therapeutic agent. This variation may have influenced the efficacy of T-cell therapy, and complicates comparison of outcomes between different patients and across trials.

View Article and Find Full Text PDF

Genetic engineering of T cells for adoptive transfer by introducing a tumor-targeting chimeric antigen receptor (CAR) is a new approach to cancer immunotherapy. A challenge for the field is to define cell surface molecules that are both preferentially expressed on tumor cells and can be safely targeted with T cells. The orphan tyrosine kinase receptor ROR1 is a candidate target for T-cell therapy with CAR-modified T cells (CAR-T cells) because it is expressed on the surface of many lymphatic and epithelial malignancies and has a putative role in tumor cell survival.

View Article and Find Full Text PDF

The use of synthetic chimeric antigen receptors (CAR) to redirect T cells to recognize tumor provides a powerful new approach to cancer immunotherapy; however, the attributes of CARs that ensure optimal in vivo tumor recognition remain to be defined. Here, we analyze the influence of length and composition of IgG-derived extracellular spacer domains on the function of CARs. Our studies demonstrate that CD19-CARs with a long spacer from IgG4 hinge-CH2-CH3 are functional in vitro but lack antitumor activity in vivo due to interaction between the Fc domain within the spacer and the Fc receptor-bearing myeloid cells, leading to activation-induced T-cell death.

View Article and Find Full Text PDF

Immunity to tumor differentiation antigens, such as melanoma antigen recognized by T cells 1 (MART-1), has been comprehensively studied. Intriguingly, CD8(+) T cells specific for the MART-1(26(27)-35) epitope in the context of HLA-A0201 are about 100 times more abundant compared with T cells specific for other tumor-associated antigens. Moreover, MART-1-specific CD8(+) T cells show a highly biased usage of the Vα-region gene TRAV12-2.

View Article and Find Full Text PDF

The ability to engineer T cells to recognize tumor cells through genetic modification with a synthetic chimeric antigen receptor has ushered in a new era in cancer immunotherapy. The most advanced clinical applications are in targeting CD19 on B-cell malignancies. The clinical trials of CD19 chimeric antigen receptor therapy have thus far not attempted to select defined subsets before transduction or imposed uniformity of the CD4 and CD8 cell composition of the cell products.

View Article and Find Full Text PDF

Objectives: Conventional methods for cardiovascular disease risk stratification are based on quantification of recognized risk factors or assessment of biomarkers during the wake period. We evaluated an algorithm on the basis of a photoplethysmographic pulse wave recording during sleep for cardiovascular risk assessment.

Methods: Five hundred and twenty individuals (346 men, age 55.

View Article and Find Full Text PDF