Publications by authors named "Sommadossi J"

Bemnifosbuvir (AT-527) and AT-752 are guanosine analogues currently in clinical trials against several RNA viruses. Here, we show that these drugs require a minimal set of 5 cellular enzymes for activation to their common 5'-triphosphate AT-9010, with an obligate order of reactions. AT-9010 selectively inhibits essential viral enzymes, accounting for antiviral potency.

View Article and Find Full Text PDF

Introduction: Chronic hepatitis C virus (HCV) persists as a public health concern worldwide. Consequently, optimizing HCV therapy remains an important objective. While current therapies are generally highly effective, advanced antiviral agents are needed to maximize cure rates with potentially shorter treatment durations in a broader patient population, particularly those patients with advanced diseases who remain difficult to treat.

View Article and Find Full Text PDF

Nucleotide analogues (NA) are currently employed for treatment of several viral diseases, including COVID-19. NA prodrugs are intracellularly activated to the 5'-triphosphate form. They are incorporated into the viral RNA by the viral polymerase (SARS-CoV-2 nsp12), terminating or corrupting RNA synthesis.

View Article and Find Full Text PDF

AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5.

View Article and Find Full Text PDF

The guanosine analog AT-527 represents a promising candidate against Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). AT-527 recently entered phase III clinical trials for the treatment of COVID-19. Once in cells, AT-527 is converted into its triphosphate form, AT-9010, that presumably targets the viral RNA-dependent RNA polymerase (RdRp, nsp12), for incorporation into viral RNA.

View Article and Find Full Text PDF

Yellow fever virus (YFV) is a zoonotic pathogen re-emerging in parts of the world, causing a viral hemorrhagic fever associated with high mortality rates. While an effective vaccine is available, having an effective antiviral against YFV is critical against unexpected outbreaks, or when vaccination is not recommended. We have previously identified AT-281, the free base of AT-752, an orally available double prodrug of a guanosine nucleotide analog, as a potent inhibitor of YFV in vitro, with a 50% effective concentration (EC50) of 0.

View Article and Find Full Text PDF

Every year, millions of people worldwide are infected with dengue virus (DENV), with a significant number developing severe life-threatening disease. There are currently no broadly indicated vaccines or therapeutics available for treatment of DENV infection. Here, we show that AT-281, the free base of AT-752, an orally available double prodrug of a guanosine nucleotide analog, was a potent inhibitor of DENV serotypes 2 and 3 , requiring concentrations of 0.

View Article and Find Full Text PDF

The impact of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, is global and unprecedented. Although remdesivir has recently been approved by the FDA to treat SARS-CoV-2 infection, no oral antiviral is available for outpatient treatment. AT-527, an orally administered double prodrug of a guanosine nucleotide analog, was previously shown to be highly efficacious and well tolerated in hepatitis C virus (HCV)-infected subjects.

View Article and Find Full Text PDF

Despite the availability of highly effective direct-acting antiviral (DAA) regimens for the treatment of hepatitis C virus (HCV) infections, sustained viral response (SVR) rates remain suboptimal for difficult-to-treat patient populations such as those with HCV genotype 3, cirrhosis or prior treatment experience, warranting development of more potent HCV replication antivirals. AT-527 is the hemi-sulfate salt of AT-511, a novel phosphoramidate prodrug of 2'-fluoro-2'-C-methylguanosine-5'-monophosphate that has potent in vitro activity against HCV. The EC50 of AT-511, determined using HCV laboratory strains and clinical isolates with genotypes 1-5, ranged from 5-28 nM.

View Article and Find Full Text PDF

AT-527 is a novel modified guanosine nucleotide prodrug inhibitor of the hepatitis C virus (HCV) NS5B polymerase, with increased antiviral activity as compared to sofosbuvir and a highly differentiated favorable preclinical profile compared to other anti-HCV nucleoside/nucleotide analogs. This was a multiple part clinical study where multiple ascending doses of AT-527 up to 600 mg (expressed as AT-527 salt form; equivalent to 553 mg free base) once daily for seven days were evaluated in a randomized, double-blind, placebo-controlled study of treatment-naïve, non-cirrhotic, genotype 1b, HCV-infected subjects. The highest dose of AT-527 for the same duration was then evaluated in two open label cohorts of a) non-cirrhotic, genotype 3, HCV-infected subjects and b) HCV-infected subjects of any genotype with compensated (Child-Pugh A) cirrhosis.

View Article and Find Full Text PDF

Background: Ribonucleoside analogs possessing a β-methyl substituent at the 2'-position of the d-ribose moiety have been previously discovered to be potent and selective inhibitors of hepatitis C virus (HCV) replication, their triphosphates acting as alternative substrate inhibitors of the HCV RdRp NS5B. Results/methodology: In this article, the authors detail the synthesis, anti-HCV evaluation in cell-based replicon assays and structure-activity relationships of several phosphoramidate diester derivatives of 2'-C-methylguanosine (2'-MeG).

Conclusion: The most promising compound, namely the O-[S-(hydroxyl)pivaloyl-2-thioethyl]{abbreviated as O-[(HO)tBuSATE)]} N-benzylamine phosphoramidate diester derivative (IDX184), was selected for further in vivo studies, and was the first clinical pronucleotide evaluated for the treatment of chronic hepatitis C up to Phase II trials.

View Article and Find Full Text PDF

In the search for inhibitors of the replication of RNA viruses, including hepatitis C virus (HCV), the hitherto unknown 4'-C-azidomethyl-beta-D-ribofuranosyl nucleosides of the five naturally occurring nucleic acid bases have been synthesized and their antiviral properties examined. These 4'-C-branched nucleosides were stereospecifically prepared by glycosylation of purine and pyrimidine aglycons with a suitable peracylated 4-C-azidomethyl-D-pentofuranose sugar, followed by removal of the protecting groups. The prepared compounds were tested for their activity against several viruses, but they did not show an antiviral effect.

View Article and Find Full Text PDF

Several thieno[3,4-d]pyrimidine derivatives, including four hitherto unknown 2',3'-dideoxy- and 2',3'-dideoxy-2',3'-didehydro-C-nucleoside analogues of adenosine and inosine have been synthesized. When evaluated in cell culture experiments against human immunodeficiency virus, none of the tested compounds exhibited any significant antiviral effect, while two of them showed some cytotoxicity.

View Article and Find Full Text PDF

The first example of a nucleoside analogue bearing a 5'-deoxy-beta-D-allo-septanose as a seven-membered ring sugar moiety, namely 9-(5-deoxy-beta-D-allo-septanosyl)-adenine, is reported. This compound was synthesized in 14 steps from the commercially available D-glycero-D-gulo-1,4-lactone. When evaluated in cell culture experiments against a broad range of viruses, it did not exhibit any significant antiviral effect or cytotoxicity.

View Article and Find Full Text PDF

A series of novel 4-fluoro-1H-pyrazole-3-carboxamide nucleoside analogues were synthesized and evaluated as potential inhibitors of RNA virus replication, including hepatitis C virus (HCV).

View Article and Find Full Text PDF

The first example of a nucleoside analogue bearing a 5'-deoxy-beta-D-allo-septanose as the sugar moiety was synthesized and evaluated as a potential inhibitor of several virus replication.

View Article and Find Full Text PDF

9-Deazaguanosine and the alpha and beta anomers of its 2'-C-methyl counter part, have been synthesized and evaluated against a broad range of RNA viruses, including hepatitis C virus.

View Article and Find Full Text PDF

Three 7-fluoro-7-deaza-2-aminopurine nucleoside derivatives were synthesized and evaluated as potential inhibitors of RNA virus replication, including hepatitis C virus (HCV).

View Article and Find Full Text PDF

The "unnatural" l-nucleoside beta-l-2'-deoxythymidine (L-dT) is a potent, specific, and selective inhibitor of the replication of hepatitis B virus (HBV), which is currently in Phase III clinical trials. This unit describes, in detail, a semi-large-scale synthesis of l-dT. This convenient methodology produces l-dT in six steps starting with l-ribose and ending with a satisfactory overall yield of l-dT, and may be applied to other 2'-deoxynucleosides, incorporating different heterocyclic bases.

View Article and Find Full Text PDF

Background: Intracellular nucleoside reverse transcriptase inhibitor triphosphate (NRTI-TP) concentrations are crucial in suppressing HIV replication. Little is known about how commonly used dual-NRTI regimens affect the intracellular levels of NRTI-TPs, the active form of these drugs. This study investigates the effect of dual-NRTI therapy in intracellular NRTI-TP levels.

View Article and Find Full Text PDF

RNA viruses are the agents of numerous widespread and often severe diseases. Their unique RNA-dependent RNA polymerase (RDRP) is essential for replication and, thus, constitutes a valid target for the development of selective chemotherapeutic agents. In this regard, we have investigated sugar-modified ribonucleoside analogues as potential inhibitors of the RDRP.

View Article and Find Full Text PDF

In our search for new therapeutic agents against chronic hepatitis C, a ribonucleoside analogue, 2'-C-methylcytidine, was discovered to be a potent and selective inhibitor in cell culture of a number of RNA viruses, including the pestivirus bovine viral diarrhea virus, a surrogate model for hepatitis C virus (HCV), and three flaviviruses, namely, yellow fever virus, West Nile virus, and dengue-2 virus. However, pharmacokinetic studies revealed that 2'-C-methylcytidine suffers from a low oral bioavailability. To overcome this limitation, we have synthesized the 3'-O-l-valinyl ester derivative (dihydrochloride form, valopicitabine, NM283) of 2'-C-methylcytidine.

View Article and Find Full Text PDF

beta-L-2'-Deoxycytidine (beta-L-dC) is a potent, selective and specific anti-hepatitis B virus (HBV) agent. To improve its oral bioavailability, several derivatives involving sugar or base acylation, as well N4-derivatization with an N,N-(dimethylamino)methylene function, were synthesized. The physicochemical characteristics (including chemical stabilities, solubilities and distribution coefficient values) and pharmacokinetics of these compounds were determined and compared with those of the parent drug, beta-L-dC.

View Article and Find Full Text PDF

Nucleoside analogs used in antiviral therapies need to be phosphorylated to their tri-phospho counterparts in order to be active on their cellular target. Human phosphoglycerate kinase (hPGK) was recently reported to participate in the last step of phosphorylation of cytidine L-nucleotide derivatives [Krishnan PGE, Lam W, Dutschman GE, Grill SP, Cheng YC. Novel role of 3-phosphoglycerate kinase, a glycolytic enzyme, in the activation of L-nucleoside analogs, a new class of anticancer and antiviral agents.

View Article and Find Full Text PDF

Among the potential reasons for treatment failure in patients receiving therapy for HIV-1 infection, one that has received only limited attention is intracellular interactions between nucleosides that may reduce their metabolism (phosphorylation) to active forms necessary for antiretroviral activity. Results reviewed in this paper indicate that there is considerable potential for interaction among nucleosides used to suppress viral replication in patients with HIV-1 infection. Zidovudine (ZDV) and zalcitabine (ddC) have both been shown to inhibit their own metabolism.

View Article and Find Full Text PDF