Publications by authors named "Somhairle MacCormick"

A series of 3-carbamoyl- and 2,3-dicarbamoyl-mannose derivatives were synthesized, conjugated to a fluorescent dye (Cy5, AF 647 or NBD) and their cellular uptake in A549 and THP-1 cell lines was studied by FACS. In contrast to earlier studies on carbamoyl mannosides, the observed uptake was not related to carbamoyl group on the mannose residue but rather to the cyanine dye attached, a trend previously observed for Cy5-fructose conjugates. The NBD-conjugates however, showed a temperature and concentration dependent uptake in case of mannose conjugates.

View Article and Find Full Text PDF

The DNA damage response (DDR) is a DNA damage surveillance and repair mechanism that can limit the effectiveness of radiotherapy and DNA-damaging chemotherapy, commonly used treatment modalities in cancer. Two related kinases, ataxia telangiectasia mutated (ATM) and ATM and Rad3-related kinase (ATR), work together as apical proteins in the DDR to maintain genome stability and cell survival in the face of potentially lethal forms of DNA damage. However, compromised ATM signaling is a common characteristic of tumor cells, which places greater reliance on ATR to mediate the DDR.

View Article and Find Full Text PDF

Preliminary studies into the use of ring-closing metathesis (RCM) in a convergent approach for the total synthesis of bryostatins are described. An ester that would have provided an advanced intermediate for a synthesis of a 20-deoxybryostatin by a RCM was prepared from an unsaturated acid and alcohol corresponding to the C1-C16 and C17-C27 fragments. However, studies of the formation of the C16-C17 double-bond by RCM were not successful and complex mixtures of products were obtained.

View Article and Find Full Text PDF

Here we report a comprehensive biological characterization of a potent and selective small-molecule inhibitor of the DNA damage response (DDR) kinase ATR. We show a profound synthetic lethal interaction between ATR and the ATM-p53 tumor suppressor pathway in cells treated with DNA-damaging agents and establish ATR inhibition as a way to transform the outcome for patients with cancer treated with ionizing radiation or genotoxic drugs.

View Article and Find Full Text PDF

Alk-2-enylstannanes with 4-, 5- and 6-alkoxy- or -hydroxy-substituents are transmetallated stereoselectively with tin(iv) halides to generate allyltin trihalides which react with aldehydes to give (Z)-alk-3-enols with useful levels of 1,5-, 1,6- and 1,7-stereocontrol. Alk-2-enylstannanes with a stereogenic centre bearing a hydroxy or alkoxy group at the 4-, 5- or 6-position, react with overall (Z)-1,5-, 1,6- and 1,7-syn-stereoselectivity with respect to the hydroxy and alkoxy substituents. The analogous reactions of alkoxy- and -hydroxyalk-2-enylstannanes with a methyl bearing stereogenic centre at the 4- or 5-position react with overall (Z)-1,5- and 1,6-anti-stereoselectivity with respect to the hydroxy and methyl substituents.

View Article and Find Full Text PDF

DNA-damaging agents are among the most frequently used anticancer drugs. However, they provide only modest benefit in most cancers. This may be attributed to a genome maintenance network, the DNA damage response (DDR), that recognizes and repairs damaged DNA.

View Article and Find Full Text PDF