For the first time, a bio-photo-catalyst is synthesized in a microfluidic platform. The microchannel, which is wall-coated by in situ synthesized bio-photo-catalyst is used as an opto-fluidic reactor for amoxicillin degradation. Analyses including SEM, XRD, FTIR, Raman, UV-Vis spectra, and DLS have been used to characterize samples.
View Article and Find Full Text PDFIn this work, the effect of environment and additives on the self-assembly and delivery of doxorubicin (DOX) have been studied. A microfluidic system with better control over molecular interactions and high surface to volume ratio has superior performance in comparison to the bulk system. Moreover, carbon nanotube (CNT) and CNT-doped structures have a high surface area to incorporate the DOX molecules into a polymer and the presence of functional groups can influence the polymer-drug interactions.
View Article and Find Full Text PDFDroplet-based microfluidic systems have been shown to be compatible with many chemical and biological reagents and capable of performing a variety of operations that can be rendered programmable and reconfigurable. This platform has dimensional scaling benefits that have enabled controlled and rapid mixing of fluids in the droplet reactors, resulting in decreased reaction times. This, coupled with the precise generation and repeatability of droplet operations, has made the droplet-based microfluidic system a potent high throughput platform for biomedical research and applications.
View Article and Find Full Text PDF