Highly pathogenic Burkholderia pseudomallei is the causative agent of melioidosis, a neglected tropical disease endemic in Southeast Asian tropical region. This bacterium encompasses diverse virulence factors which further undergo dynamic gene-expression flux as it transits through distinct environmental niches within the host which may lead to manifestation of differential clinical symptoms. B.
View Article and Find Full Text PDFThe formation of the central nervous system is a meticulously planned and intricate process. Any modification to this process has the potential to disrupt the structure and operation of the brain, which could result in deficiencies in neurological growth. When neurotoxic substances are present during the early stages of development, they can be exceptionally dangerous.
View Article and Find Full Text PDFAFG3L2 is a zinc metalloprotease and an ATPase localized in an inner mitochondrial membrane involved in mitochondrial quality control of several nuclear- and mitochondrial-encoded proteins. Mutations in AFG3L2 lead to diseases like slow progressive ataxia, which is a neurological disorder. This review delineates the cellular functions of AFG3L2 and its dysfunction that leads to major clinical outcomes, which include spinocerebellar ataxia type 28, spastic ataxia type 5, and optic atrophy type 12.
View Article and Find Full Text PDFDecline of protein quality control in neurons contributes to age-related neurodegenerative disorders caused by misfolded proteins. 4E-BP1 is a key node in the regulation of protein synthesis, as activated 4E-BP1 represses global protein translation. Overexpression of 4E-BP1 mediates the benefits of dietary restriction and can counter metabolic stress, and 4E-BP1 disinhibition on mTORC1 repression may be neuroprotective; however, whether 4E-BP1 overexpression is neuroprotective in mammalian neurons is yet to be fully explored.
View Article and Find Full Text PDFHexanucleotide expansions in C9orf72, which encodes a predicted guanine exchange factor, are the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although repeat expansion has been established to generate toxic products, mRNAs encoding the C9ORF72 protein are also reduced in affected individuals. In this study, we tested how C9ORF72 protein levels affected repeat-mediated toxicity.
View Article and Find Full Text PDFMutations in coding and non-coding regions of FUS cause amyotrophic lateral sclerosis (ALS). The latter mutations may exert toxicity by increasing FUS accumulation. We show here that broad expression within the nervous system of wild-type or either of two ALS-linked mutants of human FUS in mice produces progressive motor phenotypes accompanied by characteristic ALS-like pathology.
View Article and Find Full Text PDFMacroautophagy (hereafter autophagy) is the major pathway by which macromolecules and organelles are degraded. Autophagy is regulated by the mTOR signaling pathway-the focal point for integration of metabolic information, with mTORC1 playing a central role in balancing biosynthesis and catabolism. Of the various inputs to mTORC1, the amino acid sensing pathway is among the most potent.
View Article and Find Full Text PDFThe methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known.
View Article and Find Full Text PDFTransducin-like enhancer of split-1 (TLE1) plays a critical role in the regulation of neurogenesis by inhibiting the differentiation of neural progenitor cells into neurons. Although TLE1 is also expressed highly in the postnatal brain and through adulthood, its role in postmitotic neurons is not clear. Using cultures of cerebellar granule neurons, we show that expression of TLE1 is reduced in neurons primed to die.
View Article and Find Full Text PDFThe transcription factor FoxG1 regulates neurogenesis in the embryonic telencephalon as well as a number of other neurodevelopmental processes. While FoxG1 continues to be expressed in neurons postnatally and through adulthood, its role in fully differentiated neurons is not known. The current study demonstrates that FoxG1 promotes the survival of postmitotic neurons.
View Article and Find Full Text PDF